Skip to main content
Log in

Ecological Characteristics of Antarctic Fungi

  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract

In view of the high responsiveness of polar ecosystems to the global climate change, the research of Antarctic microorganisms has become a topical issue. The unique ecosystems that have developed under the severe climate conditions of the continent lack flowering plants but are dominated by soil mycobiota. In addition to performing their classical ecological functions, Antarctic fungi form the basis of local communities, e.g., endoliths and microbial mats. Furthermore, Antarctic fungi are a major force that mediates transformation of rock minerals in situ and makes biologically significant elements available for other organisms. For these reasons, mycobiota plays a central role in the maintenance of ecological equilibrium in Antarctica. The dominant fungal division on the continent is Ascomycota (77.1%), and not Basidiomycota (9.1%), as it is the case on other continents. For a number of reasons, yeasts and yeast-like micromycetes (mainly basidiomycetes) are more tolerant to extreme conditions in various Antarctic biotopes than filamentous fungi. Substantial evidence suggests that filamentous fungi and yeasts are better adapted to existence in ecosystems with extremely low temperatures than other microorganisms. Due to the long-term isolation of Antarctica from other continents, local biota has been evolving largely independently, which led to emergence of multiple endemic fungal taxa. The presence of eurytopes on the continent is presumably related to the global warming and growing anthropogenic pressure. This review discusses the current state of research on the structure of fungal communities of Antarctic subaerial and subaquatic biotopes, the ecological role of yeast–mycelial dimorphism in Antarctic fungi, the problem of endemism of Antarctic mycobiota, as well as the ecological and physiological adaptations of fungi to low temperatures; it also justifies the relevance of research into secondary metabolites of psychrophilic micromycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Adams, R.I., Miletto, M., Taylor, J.W., et al., Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances, ISME J., 2013, vol. 7, no. 7, pp. 1262–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alias, S.A., Smykla, J., Ming, C.Y., et al., Diversity of microfungi in orthogenic soils from Beaufort Island, continental Antarctica, Czech Polar Rep., 2013, vol. 3, no. 2.

  3. Almeida, L.F.J., Prater, I., Hurtarte, L.C.C., et al., Living vs. dead moss in Antarctica—how vegetation and seabirds determine soil organic matter distribution and composition, Geophys. Res. Abstr., 2019, vol. 21, pp. 1–11.

    Google Scholar 

  4. Alves, I.M., Gonçalves, V.N., Oliveira, F.S., et al., The diversity, distribution, and pathogenic potential of cultivable fungi present in rocks from the South Shetlands archipelago, Maritime Antarctica, Extremophiles, 2019, vol. 23, no. 3, pp. 327–336.

    Article  PubMed  Google Scholar 

  5. Antony, R., Sanyal, A., Kapse, N., et al., Microbial communities associated with Antarctic snow pack and their biogeochemical implications, Microbiol. Res., 2016, vol. 192, pp. 192–202.

    Article  CAS  PubMed  Google Scholar 

  6. Anupama, P.D., Praveen, K.D., Singh, R.K., et al., A psychrophilic and halotolerant strain of Thelebolus microsporus from Pangong Lake, Himalaya, Mycosphere, 2011, vol. 2, no. 5, pp. 601–609.

    Article  Google Scholar 

  7. Archer, S.D., de los Ríos, A., Lee, K.C., et al., Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica, Polar Biol., 2017, vol. 40, no. 5, pp. 997–1006.

    Article  Google Scholar 

  8. Arenz, B.E., Blanchette, R.A., and Farrell, R.L., Fungal diversity in Antarctic soils, in Antarctic Terrestrial Microbiology, Berlin: Springer-Verlag, 2014, pp. 35–53.

    Google Scholar 

  9. Arenz, B.E., Held, B.W., Jurgens, J.A., et al., Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica, Soil Biol. Biochem., 2006, vol. 38, no. 10, pp. 3057–3064.

    Article  CAS  Google Scholar 

  10. Baeza, M., Barahona, S., Alcaino, J., et al., Amplicon-metagenomic analysis of fungi from Antarctic terrestrial habitats, Front Microbiol., 2017, vol. 8, pp. 2235.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ball, B.A., Adams, B.J., Barrett, J.E., et al., Soil biological responses to C, N and P fertilization in a polar desert of Antarctica, Soil Biol. Biochem., 2018, vol. 122, pp. 7–18.

    Article  CAS  Google Scholar 

  12. Blanchette, R.A., Held, B.W., and Arenz, B.E., An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds, Microb. Ecol., 2010, vol. 60, pp. 29–38.

    Article  PubMed  Google Scholar 

  13. Blanchette, R.A., Held, B.W., Jurgens, J.A., et al., Wood-destroying soft rot fungi in the historic expedition huts of Antarctica, Appl. Environ. Microbiol., 2004, vol. 70, pp. 1328–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bloem, J., Bolhuis, P.R., Veninga, M.R., et al., Microscopic methods for counting bacteria and fungi in soil, in Methods in Applied Soil Microbiology and Biochemistry, New York: Academic, 1995, pp. 162–173.

    Google Scholar 

  15. Bockheim, J.G. and Munroe, J.S., Organic carbon pools and genesis of alpine soils with permafrost: a review, Arct., Antarct., Alp. Res., 2014, vol. 46, no. 4, pp. 987–1006.

    Article  Google Scholar 

  16. Borruso, L., Sannino, C., Selbmann, L., et al., A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land), Sci. Rep., 2018, vol. 8, no. 1, pp. 1–9.

    Article  CAS  Google Scholar 

  17. Boyce, K.J. and Andrianopoulos, A., Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host, FEMS Microbiol. Rev., 2015, vol. 39, no. 6, pp. 797–811.

    Article  CAS  PubMed  Google Scholar 

  18. Bradner, J.R., Sidhu, R.K., Gillings, M., et al., Hemicellulase activity of antarctic microfungi, J. Appl. Microbiol., 1999, vol. 87, no. 3, pp. 366–370.

    Article  CAS  PubMed  Google Scholar 

  19. Brady, A.L., Goodial, J., Sun, H.J., et al., Variability in carbon uptake and (re)cycling in Antarctic cryptoendolithic microbial ecosystems demonstrated through radiocarbon analysis of organic biomarkers, Geobiology, 2018, vol. 16, pp. 62–79.

    Article  CAS  PubMed  Google Scholar 

  20. Branda, E., Turchetti, B., Diolaiuti, G., et al., Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy), FEMS Microbiol. Rev., 2010, vol. 72, no. 3, pp. 354–369.

    CAS  Google Scholar 

  21. Bratchkova, A. and Ivanova, V., Bioactive metabolites produced by microorganisms collected in Antarctica and the Arctic, Biotechnol. Biotechnol. Equip., 2011, vol. 25, no. 1, pp. 1–7.

    Article  Google Scholar 

  22. Bridge, P.D. and Newsham, K.K., Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning, Fungal Ecol., 2009, vol. 2, pp. 66–74.

    Article  Google Scholar 

  23. Brunati, M., Rojas, J.L., Sponga, F., et al., Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes, Mar. Genomics, 2009, vol. 2, no. 1, pp. 43–50.

    Article  PubMed  Google Scholar 

  24. Butinar, L., Spencer-Martins, I., and Gunde-Cimerman, N., Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms, Antonie Van Leeuwenhoek, 2007, vol. 91, no. 3, pp. 277–289.

    Article  PubMed  Google Scholar 

  25. Buzzini, P., Branda, E., Goretti, M., et al., Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential, FEMS Microbiol. Ecol., 2012, vol. 82, no. 2, pp. 217–241.

    Article  CAS  PubMed  Google Scholar 

  26. Cameron, K.A., Hagedorn, B., Dieser, M., et al., Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet, Environ. Microbiol., 2015, vol. 17, no. 3, pp. 594–609.

    Article  CAS  PubMed  Google Scholar 

  27. Carrasco, M., Rozas, J.M., Barahona, S., et al., Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region, BMC Microbiol., 2012, vol. 12, no. 1, p. 251.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cavicchioli, R., Siddiqui, K.S., Andrews, D., et al., Low-temperature extremophiles and their applications, Curr. Opin. Biotechnol., 2002, vol. 13, no. 3, pp. 253–261.

    Article  CAS  PubMed  Google Scholar 

  29. Chan, Y., Van Nostrand, J.D., Zhou, J., et al., Functional ecology of an Antarctic dry valley, Proc. Natl. Acad. Sci., 2013, vol. 110, no. 22, pp. 8990–8995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choudhari, S., Lohia, R., and Grigoriev, A., Comparative metagenome analysis of an Alaskan glacier, J. Bioinf. Comput. Biol., 2014, vol. 12, no. 02, p. 1441003.

  31. Coleine, C., Pombubpa, N., Zucconi, L., et al., Endolithic fungal species markers for harshest conditions in the McMurdo Dry Valleys, Antarctica, Life, 2020, vol. 10, no. 2, p. 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coleine, C., Zucconi, L., Onofri, S., et al., Sun exposure shapes functional grouping of fungi in cryptoendolithic Antarctic communities, Life, 2018, vol. 8, no. 2, p. 19.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Coleman, D.C., Callaham, M.A., and Crossley, D.A., Fundamentals of Soil Ecology, Acad. Press, 2004.

    Google Scholar 

  34. Connell, L., Redman, R., Craig, S., et al., Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica, Soil Biol. Biochem., 2006, vol. 38, no. 10, pp. 3083–3094.

    Article  CAS  Google Scholar 

  35. Connell, L., Segee, B., Redman, R., et al., Biodiversity and abundance of cultured microfungi from the permanently ice-covered Lake Fryxell, Antarctica, Life, 2018, vol. 8, no. 3, p. 37.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Connell, L.B., Rodriguez, R.R., Redman, R.S., et al., Cold-adapted yeasts in Antarctic deserts, in Cold-Adapted Yeasts, Berlin: Springer-Verlag, 2014, pp. 75–98.

    Google Scholar 

  37. Antarctic Terrestrial Microbiology: Physical and Biological Properties of Antarctic Soils, Cowan, D.A., Ed., Springer, 2014.

    Google Scholar 

  38. Cox, F., Newsham, K.K., Bol, R., et al., Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic, Ecol., Lett., 2016, vol. 19, no. 5, pp. 528–536.

    Article  PubMed  Google Scholar 

  39. Cox, F., Newsham, K.K., and Robinson, C.H., Endemic and cosmopolitan fungal taxa exhibit differential abundances in total and active communities of Antarctic soils, Environ. Microbiol., 2019, vol. 21, no. 5, pp. 1586–1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cripps, C.L. and Eddington, L.H., Distribution of mycorrhizal types among alpine vascular plant families on the Beartooth Plateau, Rocky Mountains, USA, in reference to large-scale patterns in arctic–alpine habitats, Arct., Antarct., Alp. Res., 2005, vol. 37, no. 2, pp. 177–188.

    Article  Google Scholar 

  41. Czechowski, P., Clarke, L.J., Breen, J., et al., Antarctic eukaryotic soil diversity of the Prince Charles Mountains revealed by high-throughput sequencing, Soil Biol. Biochem., 2016, vol. 95, pp. 112–121.

    Article  CAS  Google Scholar 

  42. D’Elia, T., Veerapaneni, R., Theraisnathan, V., et al., Isolation of fungi from Lake Vostok accretion ice, Mycologia, 2009, vol. 101, no. 6, pp. 751–763.

    Article  PubMed  Google Scholar 

  43. da Silva, T.H., Silva, D.A.S., Thomazini, A., et al., Antarctic permafrost: an unexplored fungal microhabitat at the edge of life, in Fungi of Antarctica, Cham: Springer-Verlag, 2019, pp. 147–164.

    Google Scholar 

  44. de Carvalho, C.R., Santiago, I.F., da Costa Coelho, L., et al., Fungi Associated with Plants and Lichens of Antarctica, in Fungi of Antarctica, Cham: Springer-Verlag, 2019, pp. 165–199. https://doi.org/10.1007/978-3-030-18367-7_8

    Book  Google Scholar 

  45. de Los Rios, A., Wierzchos, J., Sancho, L.G., et al., Ecology of endolithic lichens colonizing granite in continental Antarctica, Lichenologist, 2005, vol. 37, pp. 383–395.

    Article  Google Scholar 

  46. de Los Rios, A., Wierzchos, J., Sancho, L.G., et al., Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy, FEMS Microbiol. Ecol., 2004, vol. 50, pp. 143–152.

    Article  CAS  PubMed  Google Scholar 

  47. de Menezes, G.C., Amorim, S.S., Gonçalves, V.N., et al., Diversity, distribution, and ecology of fungi in the seasonal snow of Antarctica, Microorganisms, 2019, vol. 7, no. 10, p. 445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Menezes, G.C.A., Godinho, V.M., Porto, B.A., et al., Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica, Extremophiles, 2017, vol. 21, pp. 259–269.

    Article  CAS  PubMed  Google Scholar 

  49. de Sousa, J.R., Gonçalves, V.N., de Holanda, R.A., et al., Pathogenic potential of environmental resident fungi from ornithogenic soils of Antarctica, Fungal Biol., 2017, vol. 121, no. 12, pp. 991–1000.

    Article  CAS  PubMed  Google Scholar 

  50. Ding, W., Zhu, R., Dawei, M.A., et al., Summertime fluxes of N2O, CH4 and CO2 from the littoral zone of Lake Daming, East Antarctica: effects of environmental conditions, Antarct. Sci., 2013, vol. 25, no. 6, pp. 752–762.

    Article  Google Scholar 

  51. do Vale Lopes, D., Schaefer, C.E.G., de Souza, J.J.L.L., et al., Concretionary horizons, unusual pedogenetic processes and features of sulfate affected soils from Antarctica, Geoderma, 2019, vol. 347, pp. 13–24.

    Article  Google Scholar 

  52. Dolev, M.B., Braslavsky, I., and Davies, P.L., Ice-binding proteins and their function, Annu. Rev. Biochem., 2016, vol. 85, pp. 515–542.

    Article  PubMed  Google Scholar 

  53. Dreesens, L.L., Lee, C.K., and Cary, S.C., The distribution and identity of edaphic fungi in the McMurdo Dry Valleys, Biology, 2014, vol. 3, no. 3, pp. 466–483.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Duarte, A.W.F., Centurion, V.B., and Oliveira, V.M., Uncultivated fungi from Antarctica, in Fungi of Antarctica, Cham: Springer-Verlag, 2019, pp. 19–41.

    Google Scholar 

  55. Duncan, S.M., Farrell, R.L., Thwaites, J.M., et al., Endoglucanase producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica, Environ. Microbiol., 2006, vol. 8, no. 7, pp. 1212–1219.

    Article  CAS  PubMed  Google Scholar 

  56. Duncan, S.M., Minasaki, R., Farrell, R.L., et al., Screening fungi isolated from historic Discovery Hut on Ross Island, Antarctica for cellulose degradation, Antarct. Sci., 2008, vol. 20, no. 5, pp. 463–470.

    Article  Google Scholar 

  57. Erich, E., Drohan, P.J., Ellis, L.R., et al., Subaqueous soils: their genesis and importance in ecosystem management, Soil Use Manage., 2010, vol. 26, no. 3, pp. 245–252.

    Article  Google Scholar 

  58. Fell, J.W., Scorzetti, G., Connell, L., et al., Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with < 5% soil moisture, Soil Biol. Biochem., 2006, vol. 38, no. 10, pp. 3107–3119.

    Article  CAS  Google Scholar 

  59. Fenice, M., Barghini, P., Selbmann, L., et al., Combined effects of agitation and aeration on the chitinolytic enzymes production by the Antarctic fungus Lecanicillium muscarium CCFEE 5003, Microb. Cell Fact., 2012, vol. 11, no. 1, p. 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fenice, M., Selbmann, L., Zucconi, L., et al., Production of extracellular enzymes by Antarctic fungal strains, Polar Biol., 1997, vol. 17, no. 3, pp. 275–280.

    Article  Google Scholar 

  61. Frisvad, J.C., Fungi in cold ecosystems, in Psychrophiles: from Biodiversity to Biotechnology, Berlin: Springer-Verlag, 2008, pp. 137–156.

    Google Scholar 

  62. Furbino, L.E., Godinho, V.M., Santiago, I.F., et al., Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula, Microb. Ecol., 2014, vol. 67, no. 4, pp. 775–787.

    Article  PubMed  Google Scholar 

  63. Gajananda, K., Singh, R.K., Pal, N., et al., Water quality of some lakes in Grovnes promontory, Larsemann Hills, East Antarctica, Twenty Sixth Indian Antarctic Expedition 2006-2008, Ministry of Earth Sciences, 2019, no. 24. pp. 379–396.

  64. Gaspar, M.L., Cabello, M.N., Pollero, R., et al., Fluorescein diacetate hydrolysis as a measure of fungal biomass in soil, Curr. Microbiol., 2001, vol. 42, no. 5, pp. 339–344.

    Article  CAS  PubMed  Google Scholar 

  65. Gawas-Sakhalkar, P., Singh, S., Naik, S., et al., High-temperature optima phosphatases from the cold-tolerant Arctic fungus Penicillium citrinum, Polar Res., 2012, vol. 31, no. 1, p. 11105.

    Article  CAS  Google Scholar 

  66. Geiges, O., Microbial processes in frozen food, Adv. Space Res., 1996, vol. 18, no. 12, pp. 109–118.

    Article  Google Scholar 

  67. Gesheva, V., Production of antibiotics and enzymes by soil microorganisms from the windmill islands region, Wilkes Land, East Antarctica, Polar Biol., 2010, vol. 33, no. 10, pp. 1351–1357.

    Article  Google Scholar 

  68. Gianoli, E., Inostroza, P., Zúñiga-Feest, A., et al., Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of central Chile and the maritime Antarctic, Arct., Antarct., Alp. Res., 2004, vol. 36, no. 4, pp. 484–489.

    Article  Google Scholar 

  69. Gill, C.O. and Lowry, P.D., Growth at sub-zero temperatures of black spot fungi from meat, J. Appl. Bacteriol., 1982, vol. 52, no. 2, pp. 245–250.

    Article  CAS  PubMed  Google Scholar 

  70. Gocheva, Y.G., Tosi, S., Krumova, E.T., et al., Temperature downshift induces antioxidant response in fungi isolated from Antarctica, Extremophiles, 2009, vol. 13, no. 2, pp. 273–281.

    Article  PubMed  Google Scholar 

  71. Godinho, V.M., Gonçalves, V.N., Santiago, I.F., et al., Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica, Extremophiles, 2015, vol. 19, no. 3, pp. 585–596.

    Article  PubMed  Google Scholar 

  72. Gomes, E.C.Q., Figueredo, H.M., de Oliveira, F.S., et al., Fungi present in soils of Antarctica, in Fungi of Antarctica, Cham: Springer-Verlag, 2019, pp. 43–67.

    Google Scholar 

  73. Gonçalves, V.N., Carvalho, C.R., Johann, S., et al., Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica, Polar Biol., 2015, vol. 38, no. 8, pp. 1143–1152.

    Article  Google Scholar 

  74. Gorbushina, A.A., Whitehead, K., Dornieden, T., et al., Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi, Can. J. Bot., 2003, vol. 81, no. 2, pp. 131–138.

    Article  CAS  Google Scholar 

  75. Gostinčar, C., Grube, M., De Hoog, S., et al., Extremotolerance in fungi: evolution on the edge, FEMS Microbiol. Ecol., 2009, vol. 71, no. 1, pp. 2–11. https://https://doi.org/10.1111/j.1574-6941.2009.00794.

  76. Gregorich, E.G., Hopkins, D.W., Elberling, B., et al., Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley, Soil Biol. Biochem., 2006, vol. 38, no. 10, pp. 3120–3129.

    Article  CAS  Google Scholar 

  77. Guffogg, S.P., Thomas-Hall, S., Holloway, P., et al., A novel psychrotolerant member of the hymenomycetous yeasts from Antarctica: Cryptococcus watticus sp. nov., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 275–277.

    Article  CAS  PubMed  Google Scholar 

  78. Gupta, R., Kumari, A., Syal, P., et al., Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology, Prog. Lipid Res., 2015, vol. 57, pp. 40–54.

    Article  CAS  PubMed  Google Scholar 

  79. Gutarowska, B. and Żakowska, Z., Mathematical models of mycelium growth and ergosterol synthesis in stationary mould culture, Lett. Appl. Microbiol., 2009, vol. 48, no. 5, pp. 605–610.

    Article  CAS  PubMed  Google Scholar 

  80. Harrington, T.J. and Mitchell, D.T., Characterization of Dryas octopetala ectomycorrhizas from limestone karst vegetation, western Ireland, Can. J. Bot., 2002, vol. 80, no. 9, pp. 970–982.

    Article  Google Scholar 

  81. Hassan, N., Rafiq, M., Hayat, M., et al., Psychrophilic and psychrotrophic fungi: a comprehensive review, Rev. Environ. Sci. Bio/Tech., 2016, vol. 15, no. 2, pp. 147–172.

  82. Heindel, R.C., Lyons, W.B., Welch, S.A., et al., Biogeochemical weathering of soil apatite grains in the McMurdo Dry Valleys, Antarctica, Geoderma, 2018, vol. 320, pp. 136–145.

    Article  CAS  Google Scholar 

  83. Henríquez, M., Vergara, K., Norambuena, J., et al., Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential, World J. Microbiol. Biotech., 2014, vol. 30, no. 1, pp. 65–76.

    Article  Google Scholar 

  84. Ji, M., van Dorst, J., Bissett, A., et al., Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”, Polar Biol., 2016, vol. 39, no. 2, pp. 237–249.

    Article  Google Scholar 

  85. Kawaguchi, M., Nonaka, K., Masuma, R., et al., New method for isolating antibiotic-producing fungi, J. Antibiot., 2013, vol. 66, no. 1, pp. 17–21.

    Article  CAS  Google Scholar 

  86. Kirk, P.M., Cannon, P.F., Minter, D.W., et al., Ainsworth and Bisby’s Dictionary of the Fungi, Wallingford: Int. Mycol. Inst., 2008.

    Book  Google Scholar 

  87. Knowlton, C., Veerapaneni, R., D’Elia, T., et al., Microbial analyses of ancient ice core sections from Greenland and Antarctica, Biology, 2013, vol. 2, no. 1, pp. 206–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kochkina, G., Ivanushkina, N., Ozerskaya, S., et al., Ancient fungi in Antarctic permafrost environments, FEMS Microbiol. Ecol., 2012, vol. 82, no. 2, pp. 501–509.

    Article  CAS  PubMed  Google Scholar 

  89. Kochkina, G.A., Ivanushkina, N.E., Lupachev, A.V., et al., Diversity of mycelial fungi in natural and human-affected Antarctic soils, Polar Biol., 2019, vol. 42, no. 1, pp. 47–64.

    Article  Google Scholar 

  90. Kochkina, G.A., Ozerskaya, S.M., Ivanushkina, N.E., et al., Fungal diversity in the Antarctic active layer, Microbiology, 2014, vol. 83, nos. 1–2, pp. 94–101.

    Article  CAS  Google Scholar 

  91. Kogej, T., Gostinčar, C., Volkmann, M., et al., Mycosporines in extremophilic fungi—novel complementary osmolytes?, Environ. Chem., 2006, vol. 3, no. 2, pp. 105–110.

    Article  CAS  Google Scholar 

  92. Krishnan, K.P. and Sinha, R.K., Functional Diversity of Microbes in Antarctic Lakes, Elsevier, 2019.

    Google Scholar 

  93. The Yeasts: a Taxonomic Study, Kurtzman, C., Fell, J.W., and Boekhout, T., Eds., Elsevier, 2011.

    Google Scholar 

  94. Lai, X., Cao, L., Tan, H., Fang, S., et al., Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea, ISME J., 2007, vol. 1, no. 8, pp. 756–762.

    Article  CAS  PubMed  Google Scholar 

  95. Lawley, B., Ripley, S., Bridge, P., et al., Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils, Appl. Environ. Microbiol., 2004, vol. 70, no. 10, pp. 5963–5972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, Y., Sun, B., Liu, S., et al., Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp., J. Nat. Prod., 2008, vol. 71, no. 9, pp. 1643–1646.

    Article  CAS  PubMed  Google Scholar 

  97. Loperena, L., Soria, V., Varela, H., et al., Extracellular enzymes produced by microorganisms isolated from maritime Antarctica, World J. Microbiol. Biotech., 2012, vol. 28, no. 5, pp. 2249–2256.

    Article  CAS  Google Scholar 

  98. Lopes, M.A., Fischman, O., Gambale, W., et al., Fluorescent method for studying the morphogenesis and viability of dermatophyte cells, Mycopathologia, 2003, vol. 156, no. 2, pp. 61–66.

    Article  CAS  PubMed  Google Scholar 

  99. Loque, C.P., Medeiros, A.O., Pellizzari, F.M., et al., Fungal community associated with marine macroalgae from Antarctica, Polar Biol., 2010, vol. 33, no. 5, pp. 641–648.

    Article  Google Scholar 

  100. Ludley, K.E. and Robinson, C.H., “Decomposer” basidiomycota in Arctic and Antarctic ecosystems, Soil Biol. Biochem., 2008, vol. 40, no. 1, pp. 11–29.

    Article  CAS  Google Scholar 

  101. Lupachev, A.V., Gubin, S.V., and Abakumov, E.V., Levels of biogenic-abiogenic interaction and structural organization of soils and soil-like bodies in Antarctica, in Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature, Cham: Springer-Verlag, 2020, pp. 481–500.

    Google Scholar 

  102. Maggi, O., Tosi, S., Angelova, M., et al., Adaptation of fungi, including yeasts, to cold environments, Plant Biosyst., 2013, vol. 147, no. 1, pp. 247–258.

    Article  Google Scholar 

  103. Magnuson, J.K. and Lasure, L.L., Fungal diversity in soils as assessed by direct culture and molecular techniques, in 102nd General Meeting of the American Society for Microbiology, Salt Lake City, 2002, pp. 19–23.

  104. Malosso, E., English, L., Hopkins, D.W., et al., Use of 13C-labelled plant materials and ergosterol, PLFA and NLFA analyses to investigate organic matter decomposition in Antarctic soil, Soil Biol. Biochem., 2004, vol. 36, no. 1, pp. 165–175.

    Article  CAS  Google Scholar 

  105. Marfenina, O.E., Nikitin, D.A., and Ivanova, A.E., The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (Progress and Russkaya stations), Eurasian Soil Sci., 2016, vol. 49, no. 8, pp. 934–941.

    Article  Google Scholar 

  106. Margesin, R. and Miteva, V., Diversity and ecology of psychrophilic microorganisms, Res. Microbiol., 2011, vol. 162, no. 3, pp. 346–361.

    Article  PubMed  Google Scholar 

  107. Mazur, P., Limits to life at low temperatures and at reduced water contents and water activities, Origins Life, 1980, vol. 10, pp. 137–159.

    Article  CAS  Google Scholar 

  108. Melo, I.S., Santos, S.N., Rosa, L.H., et al., Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici, Extremophiles, 2014, vol. 18, no. 1, pp. 15–23.

    Article  CAS  PubMed  Google Scholar 

  109. Meslier, V. and DiRuggiero, J., Endolithic microbial communities as model systems for ecology and astrobiology, in Model Ecosystems in Extreme Environments, Academic, 2019, pp. 145–168.

    Google Scholar 

  110. Mojib, N., Andersen, D.T., and Bej, A.K., Structure and function of a cold shock domain fold protein, CspD, in Janthinobacterium sp. Ant5-2 from East Antarctica, FEMS Microbiol. Lett., 2011, vol. 319, no. 2, pp. 106–114.

    Article  CAS  PubMed  Google Scholar 

  111. Nagano, Y., Nagahama, T., and Abe, F., Cold-adapted yeasts in deep-sea environments, in Cold-Adapted Yeasts, Berlin: Springer-Verlag, 2014, pp. 149–171.

    Google Scholar 

  112. Newsham, K.K., Garnett, M.H., Robinson, C.H., et al., Discrete taxa of saprotrophic fungi respire different ages of carbon from Antarctic soil, Sci. Rep., 2018, vol. 8, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  113. Oechel, W.C., Vourlitis, G., and Hastings, S.J., Cold season CO2 emission from arctic soils, Global Biogeochem. Cycles, 1997, vol. 11, no. 2, pp. 163–172.

    Article  CAS  Google Scholar 

  114. Oliveira, C.E.G.R.S., Turbay, C.V.G., Rosa, C.A., et al., Rock-inhabiting fungi in Antarctica: New frontiers of the edge of life, in Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications, 2019, pp. 99–126.

    Google Scholar 

  115. Onofri, S., Selbmann, L., De Hoog, G.S., et al., Evolution and adaptation of fungi at boundaries of life, Adv. Space Res., 2007, vol. 40, no. 11, pp. 1657–1664.

    Article  Google Scholar 

  116. Onofri, S., Zucconi, L., Isola, D., et al., Rock-inhabiting fungi and their role in deterioration of stone monuments in the Mediterranean area, Plant Biosyst., 2014, vol. 148, no. 2, pp. 384–391.

    Article  Google Scholar 

  117. Ozerskaya, S., Kochkina, G., Ivanushkina, N., et al., Fungi in permafrost, in Permafrost Soils, Berlin: Springer-Verlag, 2009, pp. 85–95.

    Google Scholar 

  118. Panikov, N.S., Subzero activity of cold-adapted yeasts, in Cold-Adapted Yeasts, Berlin: Springer-Verlag, 2014, pp. 295–323.

    Google Scholar 

  119. Panikov, N.S., Flanagan, P.W., Oechel, W.C., et al., Microbial activity in soils frozen to below –39°C, Soil Biol. Biochem., 2006, vol. 38, no. 4, pp. 785–794.

    Article  CAS  Google Scholar 

  120. Park, M.S., Lee, E.J., Fong, J.J., et al., A new record of Penicillium antarcticum from marine environments in Korea, Mycobiology, 2014, vol. 42, no. 2, pp. 109–113.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pinseel, E., Sweetlove, M., Tytgat, B., et al., Diversity and biogeography of microorganisms in microbial mats of Antarctic lakes, in Book of Abstracts, 2017, p. 199.

  122. Pudasaini, S., Wilson, J., Ji, M., et al., Microbial diversity of Browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods, Front. Micobiol., 2017, vol. 8, p. 591.

    Google Scholar 

  123. Pulschen, A.A., Bendia, A.G., Fricker, A.D., et al., Isolation of uncultured bacteria from Antarctica using long incubation periods and low nutritional media, Front. Micobiol., 2017, vol. 8. p. 1346.

    Article  Google Scholar 

  124. Rao, S., Chan, Y., Lacap, D.C., et al., Low-diversity fungal assemblage in an Antarctic Dry Valleys soil, Polar Biol., 2012, vol. 35, no. 4, pp. 567–574.

    Article  Google Scholar 

  125. Rivkina, E., Laurinavichyus, K., and Gilichinsky, D.A., Microbial life below the freezing point within permafrost, Princeton: Princeton Univ. Press, 2005, pp. 106–117.

    Book  Google Scholar 

  126. Rivkina, E., Petrovskaya, L., Vishnivetskaya, T., et al., Metagenomic analyses of the late Pleistocene permafrost – additional tools for reconstruction of environmental conditions, Biogeosciences, 2016, vol. 13, no. 7, pp. 2207–2219.

    Article  Google Scholar 

  127. Robinson, C.H., Cold adaptation in Arctic and Antarctic fungi, New Phytol., 2001, vol. 151, no. 2, pp. 341–353.

    Article  CAS  Google Scholar 

  128. Rogers, S.O., Shtarkman, Y.M.S., Koçer, Z.A., et al., Ecology of subglacial Lake Vostok (Antarctica), based on metagenomic/metatranscriptomic analyses of accretion ice, Biology, 2013, vol. 2, pp. 629–650.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Rojas-Jimenez, K., Wurzbacher, C., Bourne, E.C., et al., Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica, Sci. Rep., 2017, vol. 7, no. 1, p. 15348.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rosa, L.H., Vaz, A.B., Caligiorne, R.B., et al., Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae), Polar Biol., 2009, vol. 32, no. 2, pp. 161–167.

    Article  Google Scholar 

  131. Rosa, L.H., Zani, C.L., Cantrell, C.L., et al., Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds, in Fungi of Antarctica, Cham: Springer-Verlag, 2019, pp. 1–17.

    Book  Google Scholar 

  132. Roser, D.J., Seppelt, R.D., and Ashbolt, N., Microbiology of ornithogenic soils from the windmill islands, budd coast, continental Antarctica: Some observations on methods for measuring soil biomass in ornithogenic soils, Soil Biol. Biochem., 1993, vol. 25, no. 2, pp. 177–183.

    Article  Google Scholar 

  133. Rothschild, L.J. and Mancinelli, R.L., Life in extreme environments, Nature, 2001, vol. 409, no. 6823, pp. 1092–1101.

    Article  CAS  PubMed  Google Scholar 

  134. Ruisi, S., Barreca, D., Selbmann, L., et al., Fungi in Antarctica, Rev. Environ. Sci. Bio/Tech., 2007, vol. 6, nos. 1–3, pp. 127–141.

  135. Sánchez, L.A., Gómez, F.F., and Delgado, O.D., Cold-adapted microorganisms as a source of new antimicrobials, Extremophiles, 2009, vol. 13, no. 1, pp. 111–120.

    Article  PubMed  Google Scholar 

  136. Santiago, I.F., Soares, M.A., Rosa, C.A., et al., Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica, Extremophiles, 2015, vol. 19, no. 6, pp. 1087–1097.

    Article  PubMed  Google Scholar 

  137. Sanyal, A., Antony, R., Samui, G., et al., Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica, Microbiol. Res., 2018, vol. 208, pp. 32–42.

    Article  CAS  PubMed  Google Scholar 

  138. Schultz, J. and Rosado, A.S., Microbial role in the ecology of Antarctic plants, in The Ecological Role of Micro-Organisms in the Antarctic Environment, Cham: Springer-Verlag, 2019, pp. 257–275.

    Google Scholar 

  139. Scorzetti, G., Petrescu, I., Yarrow, D., et al., Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica, Antonie van Leeuwenhoek, 2000, vol. 77, no. 2, pp. 153–157.

    Article  CAS  PubMed  Google Scholar 

  140. Sedov, S., Zazovskaya, E., Fedorov-Davydov, D., et al., Soils of East Antarctic oasis: Interplay of organisms and mineral components at microscale, Bol. Soc. Geol. Mex., 2019, vol. 71, no. 1, pp. 43–63.

    Article  Google Scholar 

  141. Selbmann, L., de Hoog, G.S., Zucconi, L., et al., Black yeasts in cold habitats, in Cold-Adapted Yeasts, Berlin: Springer-Verlag, 2014, pp. 173–189.

    Google Scholar 

  142. Selbmann, L., Grube, M., Onofri, S., et al., Antarctic epilithic lichens as niches for black meristematic fungi, Biology, 2013, vol. 2, no. 2, pp. 784–797.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Selbmann, L., Onofri, S., Coleine, C., et al., Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities, Extremophiles, 2017, vol. 21, no. 6, pp. 1069–1080.

    Article  PubMed  Google Scholar 

  144. Sharma, S., Szele, Z., Schilling, R., et al., Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil, Appl. Environ. Microbiol., 2006, vol. 72, no. 3, pp. 2148–2154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shivaji, S. and Prasad, G.S., Antarctic yeasts: biodiversity and potential applications, in Yeast Biotechnology: Diversity and Applications, Dordrecht: Springer-Verlag, 2009, pp. 3–18.

    Google Scholar 

  146. Simon, C., Wiezer, A., Strittmatter, A.W., et al., Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome, Appl. Environ. Microbiol., 2009, vol. 75, no. 23, pp. 7519–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Singh, J., Dubey, A.K., and Singh, R.P., Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations, Rev. Environ. Sci. Bio/Tech., 2011, vol. 10, no. 1, pp. 63–77.

  148. Singh, J., Singh, R.P., and Khare, R., Influence of climate change on Antarctic flora, Polar Sci., 2018, vol. 18, pp. 94–101.

    Article  Google Scholar 

  149. Singh, P. and Raghukumar, C., Diversity and physiology of deep-sea yeasts: A review, Kavaka, 2014, vol. 43, pp. 50–63.

    Google Scholar 

  150. Smith, S.E. and Read, D.J., Mycorrhizal Symbiosis, Acad. Press, 2010.

    Google Scholar 

  151. Soina, V.S., Mergelov, N.S., Kudinova, A.G., et al., Microbial communities of soils and soil-like bodies in extreme conditions of East Antarctica, Paleontol. J., 2018, vol. 52, no. 10, pp. 1186–1195.

    Article  Google Scholar 

  152. Svahn, K.S., Chryssanthou, E., Olsen, B., et al., Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B, Fungal Biol. Biotechnol., 2015, vol. 2, no. 1, p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Tanino, T., Aoki, T., Chung, W.Y., et al., Improvement of a Candida antarctica lipase B-displaying yeast whole-cell biocatalyst and its application to the polyester synthesis reaction, Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 1, pp. 59–66.

    Article  CAS  PubMed  Google Scholar 

  154. Taylor, J.W., Turner, E., Townsend, J.P., et al., Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi, Philos. Trans. R. Soc., B, 2006, vol. 361, no. 1475, pp. 1947–1963.

  155. Tedrow, J.C.F. and Ugolini, F.C., Antarctic soils, in Antarctic Soils and Soil Forming Processes, 1966, vol. 8, pp. 161–177.

  156. Thomas-Hall, S.R., Turchetti, B., Buzzini, P., et al., Cold-adapted yeasts from Antarctica and the Italian Alps–description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov., Extremophiles, 2010, vol. 14, pp. 47–59.

    Article  CAS  PubMed  Google Scholar 

  157. Thomas-Hall, S.R. and Watson, K., Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1033–1038.

    CAS  PubMed  Google Scholar 

  158. Timling, I., Walker, D.A., Nusbaum, C., et al., Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic, Mol. Ecol., 2014, vol. 23, no. 13, pp. 3258–3272.

    Article  CAS  PubMed  Google Scholar 

  159. Tomova, I., Stoilova-Disheva, M., Lazarkevich, I., et al., Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands, Front. Life Sci., 2015, vol. 8, no. 4, pp. 348–357.

    Article  CAS  Google Scholar 

  160. Tosi, S., Casado, B., Gerdol, R., et al., Fungi isolated from Antarctic mosses, Polar Biol., 2002, vol. 25, no. 4, pp. 262–268.

    Article  Google Scholar 

  161. Tosi, S., Kostadinova, N., Krumova, E., et al., Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica, Polar Biol., 2010, vol. 33, no. 9, pp. 1227–1237.

    Article  Google Scholar 

  162. Tscherko, D., Bölter, M., Beyer, L., et al., Biomass and enzyme activity of two soil transects at King George Island, Maritime Antarctica, Arct., Antarct., Alp. Res., 2003, vol. 35, no. 1, pp. 34–47.

    Article  Google Scholar 

  163. Turchetti, B., Hall, S.R.T., Connell, L.B., et al., Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov., Extremophiles, 2011, vol. 15, no. 5, p. 573.

    Article  CAS  PubMed  Google Scholar 

  164. Turchetti, B., Selbmann, L., Blanchette, R.A., et al., Cryptococcus vaughanmartiniae sp. nov. and Cryptococcus onofrii sp. nov. two new species isolated from worldwide cold environments, Extremophiles, 2015, vol. 19, no. 1, pp. 149–159.

    Article  PubMed  Google Scholar 

  165. Vaz, A.B., Rosa, L.H., Vieira, M.L., et al., The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica, Braz. J. Microbiol., 2011, vol. 42, no. 3, pp. 937–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Velázquez, D., López-Bueno, A., De Cárcer, D.A., et al., Ecosystem function decays by fungal outbreaks in Antarctic microbial mats, Sci. Rep., 2016, vol. 6, no. 1, p. 22954.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Villarreal, P., Carrasco, M., Barahona, S., et al., Tolerance to ultraviolet radiation of psychrotolerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content, Curr. Microbiol., 2016, vol. 72, no. 1, pp. 94–101.

    Article  CAS  PubMed  Google Scholar 

  168. Vincent, W.F., Evolutionary origins of Antarctic microbiota: invasion, selection and endemism, Antarct. Sci., 2000, vol. 12, no. 3, pp. 374–385.

    Article  Google Scholar 

  169. Vishniac, H.S. and Onofri, S., Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica, Antonie van Leeuwenhoek, 2003, vol. 83, no. 3, pp. 231–233.

    Article  CAS  PubMed  Google Scholar 

  170. Wei, S.T., Higgins, C.M., Adriaenssens, E.M., et al., Genetic signatures indicate widespread antibiotic resistance and phage infection in microbial communities of the McMurdo Dry Valleys, East Antarctica, Polar Biol., 2015, vol. 38, no. 6, pp. 919–925.

    Article  Google Scholar 

  171. Weinstein, R.N., Montiel, P.O., and Johnstone, K., Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic, Mycologia, 2000, vol. 92, no. 2, pp. 222–229.

    Article  CAS  Google Scholar 

  172. Wierzchos, J., De Los Ríos, A., Sancho, L.G., et al., Viability of endolithic microorganisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy, J. Microsc., 2004, vol. 216, no. 1, pp. 57–61.

    Article  CAS  PubMed  Google Scholar 

  173. Yeager, C.M., Life on the Edge: Microbes in Rock Varnish, Los Alamos: Los Alamos National Lab., 2019.

    Book  Google Scholar 

  174. Yergeau, E., Bokhorst, S., Huiskes, A.H., et al., Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient, FEMS Microbiol. Ecol., 2007, vol. 59, no. 2, pp. 436–451.

    Article  CAS  PubMed  Google Scholar 

  175. Yergeau, E. and Kowalchuk, G.A., Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency, Environ. Microbiol., 2008, vol. 10, no. 9, pp. 2223–2235.

    Article  PubMed  Google Scholar 

  176. Yung, C.C., Chan, Y., Lacap, D.C., et al., Characterization of chasmoendolithic community in miers valley, Mcmurdo dry valleys, Antarctica, Microb. Ecol., 2014, vol. 68, no. 2, pp. 351–359.

    Article  PubMed  Google Scholar 

  177. Zhang, T., Zhang, Y.Q., Liu, H.Y., et al., Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica, FEMS Mirobiol. Lett., 2013, vol. 341, no. 1, pp. 52–61.

    Article  CAS  Google Scholar 

  178. Zumsteg, A., Luster, J., Göransson, H., Smitten-berg, R.H., Brunner, I., Bernasconi, S.M., Zeyer, J., and Frey, B., Bacterial, archaeal and fungal succession in the forefield of a receding glacier, Microb. Ecol., 2012, vol. 63, no. 3, pp. 552–564.

    Article  PubMed  Google Scholar 

  179. Abakumov, E.V., Zoogenic pedogenesis as the main biogenic soil process in Antarctica, Russ. Ornitol. Zh., 2014, vol. 972, no. 23, pp. 576–584.

    Google Scholar 

  180. Abakumov, E.V. and Lupachev A.V., Soil diversity in terrestrial ecosystems of Antarctic (at the Russian Antarctic station locations), Ukr. Antarkt. Zh., 2012, nos. 10–11, pp. 222–228.

  181. Abramov, A.A., Sletten, R.S., Rivkina, E.M., et al., Geocryological conditions of Antarctica, Kriosfera Zemli, 2011, vol. 3, no. 15, pp. 3–19.

    Google Scholar 

  182. Ananyeva, N.D., Polyanskaya, L.M., Stolnikova, E.V., et al., The ratio of fungal and bacterial biomass in the forest soil profile, Izvest. Ross. Akad. Nauk, 2010, no. 3, pp. 308–317.

  183. Vlasov, D.Yu., Zelenskaya, M.S., Kirtsideli, I.Yu., et al., Fungi on the natural and anthropogenic substrates in West antarctica, Mikol. Fitopatol., 2012, vol. 46, no. 1, pp. 20–26.

    Google Scholar 

  184. Goryachkin, S.V., Gilichinskiy, D.A., Mergelov, N.S., et al., Soils of Antarctica: first results, problems and prospects for research, Geokhem. Landshaftov Geogr. Pochv, 2012, pp. 365–392.

    Google Scholar 

  185. Goryachkin, S.V., Mergelov, N.S., and Targulyan, V.O., Extreme pedology: elements of theory and methodological approaches, Eurasian Soil Sci., 2019, vol. 52, pp. 1–13. https://doi.org/10.1134/S0032180X19010040

    Article  Google Scholar 

  186. Kirtsideli, I.Yu., Vlasov, D.Yu., Abakumov, E.V., et al., Diversity and enzyme activity of microfungi from Antarctic soils, Mikol. Fitopatol., 2010, vol. 44, no. 5, pp. 387–398.

    Google Scholar 

  187. Kochkina, G.A., Ivanushkina, N.E., and Ozer-skaya, S.M., The structure of mycobiota in permafrost, Mikol. Segodnya, 2011, no. 2, pp. 178–184.

  188. Lupachev, A.V. and Abakumov, E.V., Soils of Mary Byrd Land (West Antarctica), Eurasian Soil Sci., vol. 46, pp. 994–1006.

  189. Lysak, L.V., Maksimova, I.A., Nikitin, D.A., et al., Microbial communities of soils of East Antarctica, Vestn. Mosk. Univ., Ser. 16: Biol., 2018, vol. 73, no. 3, pp. 132–140.

    Google Scholar 

  190. Matveeva, N.V., Zanokha, L.L., Afonina, O.M., et al., Rasteniya i griby polyarnykh pustyn’ severnogo polushariya (Plants and Fungi of the Polar Deserts of the Northern Hemisphere), 2015.

    Google Scholar 

  191. Mergelov, N.S., et al., Soils of the wet valleys in Larsemann and Vestfold Hills (Princess Elizabeth Land, East Antarctica), Eurasian Soil Sci., vol. 47, pp. 845–862.

  192. Mergelov, N.S., Goryachkin, S.V., Shorkunov, I.G., et al., Endolithic soil formation and rocky “tanning” on massive crystalline rocks in East Antarctica, Pochvovedenie, 2012, no. 10, pp. 1027–1044.

  193. Mergelov, N.S., Dolgikh, A.V., Zazovskaya, E.P., et al., Soils and soil-like bodies of oases and nunataks of East Antarctica, Vopr. Geogr., 2016, no. 142, pp. 593–628.

  194. Mukhametova, N.V., Abakumov, E.V., and Ryumin, A.G., Granulometric composition of Antarctic soils according to sedimentometry and laser diffraction data, Fiz. Biofiz. Ekol. Pochv, 2013, vol. 3, no. 11, pp. 1–6.

    Google Scholar 

  195. Nikitin, D.A., Marfenina, O.E., Kudinova, A.G., et al., Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica, Eurasian Soil Sci., 2017, vol. 50, pp. 1086–1097.

    Article  Google Scholar 

  196. Nikitin, D.A. and Semenov, M.V., Subaqual soils of Antarctica: conditions of formation and perspectives of microbiological research, Byull. Pochv. Inst. im. V. V. Do- kuchaeva, 2020, vol. 102, pp. 49–69.

    Google Scholar 

  197. Polyanskaya, L.M. and Zvyagintsev, D.G., The content and composition of microbial biomass as an index of the ecological status of soil, Eurasian Soil Sci., 2005, vol. 38, no. 6, pp. 625–633.

    Google Scholar 

  198. Chernov, I.Yu. and Marfenina, O.E., Adaptive strategies of fungi in connection with the development of terrestrial habitats, in Paleopochvy i indikatory kontinental’nogo vyvetrivaniya v istorii biosfery (Paleosoils and Indicators of Continental Weathering in the History of the Biosphere), 2010, no. 95, pp. 95–109.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-04-00328 “Ecological and Physiological Adaptations of Fungi to Low Temperatures; Biotechnological Potential of Fungal Strains of Extremely Cold Ecosystems”) and by the Russian Science Foundation (project no. 20-17-00212 “Summarizing Information on Fungi of the Supraglacial Zone of Glaciers”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikitin.

Ethics declarations

Conflict of interest. The author declares that there is no conflict of interests.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A. Ecological Characteristics of Antarctic Fungi. Dokl Biol Sci 508, 32–54 (2023). https://doi.org/10.1134/S0012496622700120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496622700120

Keywords:

Navigation