Skip to main content
Log in

Study of a Nonlinear Eigenvalue Problem by the Integral Characteristic Equation Method

  • ORDINARY DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider an eigenvalue problem for a quasilinear nonautonomous second-order differential equation with a cubic nonlinearity. The problem is posed on an interval with boundary conditions of the first kind and with an auxiliary (local) condition at one of the endpoints of the interval. We prove that the problem in question has infinitely many negative and infinitely many positive eigenvalues. The corresponding linear problem has infinitely many negative and finitely many (or none) positive eigenvalues. Moreover, the first terms of the asymptotics of the negative eigenvalues of the nonlinear and linear problems coincide, while the asymptotics of the positive eigenvalues of the nonlinear problem is expressed in terms of a transcendental function of the eigenvalue number. The results are derived with the use of a nonclassical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Gokhberg, I.Ts. and Krein, M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov (Introduction to the Theory of Linear Nonself-Adjoint Operators), Moscow: Nauka, 1965.

    Google Scholar 

  2. Valovik, D.V., On a nonlinear eigenvalue problem related to the theory of propagation of electromagnetic waves, Differ. Equations, 2018, vol. 54, no. 2, pp. 165–177.

    Article  MathSciNet  Google Scholar 

  3. Valovik, D.V., On spectral properties of the Sturm–Liouville operator with power nonlinearity, Monatshefte für Mathematik, 2017, pp. 1–17.

  4. Boardman, A.D., Egan, P., Lederer, F., Langbein, U., and Mihalache, D., Third-Order Nonlinear Electromagnetic TE and TM Guided Waves, Amsterdam–London–New York–Tokyo: Elsevier Sci., 1991. Reprinted from Nonlinear Surface Electromagnetic Phenomena, Ponath, H.-E. and Stegeman, G.I., Eds.

    Google Scholar 

  5. Cazenave, T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, AMS, 2003, vol. 10.

  6. Vainberg, M.M., Variatsionnye metody issledovaniya nelineinykh operatorov (Variational Methods for Studying Nonlinear Operators), Moscow: GITTL, 1956.

    Google Scholar 

  7. Ambrosetti, A. and Rabinowitz, P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, vol. 14, no. 4, pp. 349–381.

    Article  MathSciNet  Google Scholar 

  8. Osmolovskii, V.G., Nelineinaya zadacha Shturma–Liuvillya (Nonlinear Sturm–Liouville Problem), St. Petersburg: S.-Peterb. Gos. Univ., 2003.

    Google Scholar 

  9. Krasnosel’skii, M.A., Topologicheskie metody v teorii nelineinykh integral’nykh uravnenii (Topological Methods in the Theory of Nonlinear Integral Equations), Moscow: GITTL, 1956.

    Google Scholar 

  10. Vainberg, M.M. and Trenogin, V.A., Teoriya vetvleniya reshenii nelineinykh uravnenii (Theory of Branching of Solutions of Nonlinear Equations), Moscow: Nauka, 1969.

    Google Scholar 

  11. Courant, R. and Hilbert, D., Methoden der mathematischen Physik. Bd. 1 , 1931, 3rd ed. Translated under the title: Metody matematicheskoi fiziki, T. 1 , Moscow: GTTI, 1951.

    Book  Google Scholar 

  12. Schürmann, H.W., Smirnov, Yu.G., and Shestopalov, Yu.V., Propagation of TE-waves in cylindrical nonlinear dielectric waveguides, Phys. Rev. E, 2005, vol. 71, no. 1, p. 016614(10).

    Article  Google Scholar 

  13. Marchenko, V.A., Operatory Shturma–Liuvillya i ikh prilozheniya (Sturm–Liouville Operators and Their Applications), Kiev: Nauk. Dumka, 1977.

    Google Scholar 

  14. Valovik, D.V., Integral dispersion equation method to solve a nonlinear boundary eigenvalue problem, Nonlin. Anal.: Real World Appl., 2014, vol. 20, no. 12, pp. 52–58.

    Article  MathSciNet  Google Scholar 

  15. Valovik, D.V., The spectral properties of some nonlinear operators of Sturm–Liouville type, Sb. Math., 2017, vol. 208, no. 9, pp. 1282–1297.

    Article  MathSciNet  Google Scholar 

  16. Valovik, D.V., Nonlinear multi-frequency electromagnetic wave propagation phenomena, J. Opt., 2017, vol. 19, no.. 11, article ID 115502.

    Article  Google Scholar 

  17. Pontryagin, L.S., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow: Fizmatlit, 1961.

    MATH  Google Scholar 

  18. Petrovskii, I.G., Lektsii po teorii obyknovennykh differentsial’nykh uravnenii (Lectures on the Theory of Ordinary Differential Equations), Moscow: Mosk. Gos. Univ., 1984.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-71-10015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Valovik.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valovik, D.V. Study of a Nonlinear Eigenvalue Problem by the Integral Characteristic Equation Method. Diff Equat 56, 171–184 (2020). https://doi.org/10.1134/S0012266120020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266120020032

Navigation