Skip to main content
Log in

Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Aluminum particles with a diameter of ≈50 nm were synthesized by means of the Gen-Miller flow-levitation method with alumina or trimethylsiloxane coatings formed on the surface of these particles. Aluminum/HMX nanocomposites manufactured by suspension atomization drying or dry mechanical mixing were investigated by x-ray diffraction analysis, scanning electron microscopy, and local x-ray analysis. The combustion of these mixtures with changing particle size of the components and composition of the coating on the metal particles was studied. It was found that, when the composites produced by atomization drying were stored as loose powder, HMX crystals grew, which increased the burning rate of compressed samples from 19 to 55 mm/s in the pressure range 3–10 MPa, and the pressure exponent varied from 0.34 to 0.84, depending on how the burning rate correlates with the pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Lewis, C. G. Rumchik, M. J. Smith, K. A. S. Fernando, C. A. Crouse, J. E. Spowart, E. A. Guliants, and C. E. Bunker, “Comparison of Post-Detonation Combustion in Explosives Incorporating Aluminum Nanoparticles: Influence of the Passivation Layer,” J. Appl. Phys. 113, 044907 (2013); DOI: 10.1063/1.4790159.

    Article  ADS  Google Scholar 

  2. W. K. Lewis, B. A. Harruff, J. R. Gord, A. T. Rosenberger, T. M. Sexton, E. A. Guliants, C. E. Bunker, and E. Christopher, “Chemical Dynamics of Aluminum Nanoparticles in Ammonium Nitrate and Ammonium Perchlorate Matrices: Enhanced Reactivity of Organically Capped Aluminum,” J. Phys. Chem. 115(1), 70–77 (2013); DOI: 10.1021/jp107264h.

    Google Scholar 

  3. C. H. Hou, X. H. Geng, C. W. An, J. Y. Wang, W. Z. Xu, and X. D. Li, “Preparation of Al Nanoparticles and Their Influence on the Thermal Decomposition of RDX,” Centr. Eur. J. Energ. Mater. 10(1), 123–133 (2013).

    Google Scholar 

  4. Yu. V. Frolov, A. N. Pivkina, K. A. Monogarov, D. A. Ivanov, S. H. Mudretsova, and D. B. Meerov, “The Structure of Particles and the Combustion Parameters of Compositions with Nanoaluminum,” Khim. Fiz., No. 6, 52–55 (2008).

    Google Scholar 

  5. W. Shufeng, Y. Yanqiang, Yu. Hyunung, and D. D. Dlott, “Dynamical Effects of the Oxide Layer in Aluminum Nanoenergetic Materials,” Propel., Explos., Pyrotech. 30(2), 148–155 (2005); DOI: 10.1002/prep.200400097.

    Article  Google Scholar 

  6. D. A. Reese, S. F. Son, and L. J. Groven, “Preparation and Characterization of Energetic Crystals with Nanoparticle Inclusions,” Propel., Explos., Pyrotech. 37(6), 635–638 (2012). DOI: 10.1002/prep.201200142.

    Article  Google Scholar 

  7. K. Jayaraman, K. V. Anand, S. R. Chakravarthy, and R. Sarathi, “Effect of Nano-Aluminum in Plateau-Burning and Catalyzed Composite Solid Propellant Combustion,” Combust. Flame. 156(8), 1662–1673 (2009). DOI: 10.1016/j.combustflame.2009.03.014.

    Article  Google Scholar 

  8. M. K. Berner, V. E. Zarko, and M. B. Talavar, “Nanoparticles of Energetic Materials: Synthesis and Properties (Review),” Fiz. Goreniya Vzryva 49(6), 3–30 (2013) [Combust., Expl., Shock Waves 49 (6), 625–647 (2013)].

    Google Scholar 

  9. A. N. Zhigach, M. L. Kuskov, I. O. Leipunskii, N. I. Stoenko, and V. B. Storozhev, “Preparation of Ultrafine Powders of Metals, Alloys, and Metal Compounds by the Gen-Miller Method: History, Current Status, and Prospects,” Ros. Nanotekhnolog. 7(3–4), 28–37 (2012).

    Google Scholar 

  10. A. N. Zhigach, I. O. Leipunskii, M. L. Kuskov, P. A. Pshechenkov, N. G. Berezkina, M. N. Larichev, and V. G. Krasovskii, “Synthesis of Coatings on the Surface of Ultrafine Aluminum Particles,” Khim. Fiz. 21(4), 72–78 (2002).

    Google Scholar 

  11. A. N. Zhigach, I. O. Leipunskii, N. G. Berezkina, P. A. Pshechenkov, E. S. Zotova, B. V. Kudrov, M. F. Gogulya, M. A. Brazhnikov, and M. L. Kuskov, “Aluminized Nitramine-Based Nanocomposites: Manufacturing Technique and Structure Study,” Fiz. Goreniya Vzryva 45(6), 35–37 (2009) [Combust., Expl., Shock Waves 45 (6), 666–677 (2009)].

    Google Scholar 

  12. K. Sumi, N. Kubota, E. Andoh, and K. Shiromoto, “Gas-Phase Details of HMX-Based CMDB Propellants,” in Proc. 12th Int. Symp. Space Technology and Science, Tokyo, 1977, pp. 483–488.

  13. M. W. Backstead and K. P. McSarty, “Modeling Calculations for HMX Composite Propellants,” AIAA J. 20(1), 106–115 (1982). DOI: 10.2514/3.51055

    Article  ADS  Google Scholar 

  14. M. W. Beckstead, R. L. Derr, and C. F. Price, “A Model of Composite Solid-Propellant Combustion Based on Multiple Flames,” AIAA J. 8(12), 2200–2207 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zhigach.

Additional information

Original Russian Text © A.N. Zhigach, I.O. Leipunskii, A.N. Pivkina, N.V. Murav’ev, K.A. Monogarov, M.L. Kuskov, E.S. Afanasenkova, N.G. Berezkina, P.A. Pshechenkov, A.A. Bragin.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 1, pp. 117–124, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhigach, A.N., Leipunskii, I.O., Pivkina, A.N. et al. Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion. Combust Explos Shock Waves 51, 100–106 (2015). https://doi.org/10.1134/S0010508215010104

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215010104

Keywords

Navigation