Skip to main content
Log in

Chirality As a Symmetric Basis of Self-Organization of Biomacromolecules

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A review of materials within the concept of chirality as a symmetric basis of self-organization in biomacromolecules is presented. The following topics are considered: methods for determining the chirality of regular and irregular protein structures, the distribution of helical and superhelical structures in polypeptide chains, a model for the formation of a three-dimensional structure of the right-handed α-helix from a chain of L-amino acid residues, and a model for the formation of the right-handed α-helix based on a two-particle model of movement in the Lennard-Jones potential. The applied aspects of the concept of chirality in pharmacology and bioengineering, the chirality of drugs with bioactive enantiomers and the mechanisms of self-assembly of helical structures of phenylalanine and diphenylalanine nanotubes of different chirality are discussed. The basic concepts of molecular machines as chiral hierarchical structures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. V.A. Tverdislov, Biophysics 58 (1), 159 (2013).

    Article  Google Scholar 

  2. V. A. Tverdislov and E. Malyshko, Phys.– Usp. 62 (4), 354 (2019).

    Google Scholar 

  3. E. V. Malyshko, O. E. Bagrova, and V. A. Tverdislov, Biofizika 65 (3), 439 (2020).

    Google Scholar 

  4. P. A. Guye, C. R. 116, 1451 (1893).

  5. E. Ruch and A. Schonhofer, Theor. Chim. Acta 10 (2), 91 (1968).

    Article  Google Scholar 

  6. M. Randic, Chemometr. Intell. Lab. Syst. 10, 213 (1991).

    Article  Google Scholar 

  7. X. L. Peng, et al., Molecules 9 (12), 1089 (2004).

    Article  Google Scholar 

  8. Y. Du, et al., J. Chem. Inf. Comput. Sci. 42 (5), 993 (2002).

    Article  Google Scholar 

  9. D. Yaffe and Y. J. Cohen, Chem. Inf. Comput. Sci. 41 (2), 463 (2001).

    Article  Google Scholar 

  10. E. S. Goll and P. C. Jurs, J. Chem. Inf. Comput. Sci. 39 (6), 1081 (1999).

    Article  Google Scholar 

  11. H. E. McClelland and P. C. Jurs, J. Chem. Inf. Comput. Sci. 40 (4), 967 (2000).

    Article  Google Scholar 

  12. A. R. Katritzky, S. Sild, and M. J. Karelson, Chem. Inf. Comput. Sci. 38 (5), 840 (1998).

    Article  Google Scholar 

  13. T. Zhao, Q. Zhang, H. Long, and L. Xu, PLoS One 9 (7), (2014).

  14. M. Randic, J. Chem. Inf. Comput. Sci. 41 (3), 639 (2001).

    Article  Google Scholar 

  15. A. B. Buda, T. A. der Heyde, and K. Mislow, Angew. Chem. 31 (8), 989 (1992).

    Article  Google Scholar 

  16. P. G. Mezey, J. Mol. Struct.: THEOCHEM 455 (2–3), 183 (1998).

    Article  Google Scholar 

  17. G. Gilat and L. S. Schulman, Chem. Phys. Lett. 121 (1–2), 13 (1985).

    Article  ADS  Google Scholar 

  18. H. Zabrodsky, S. Peleg, and D. Avnir, J. Am. Chem. Soc. 114 (20), 7843 (1992).

    Article  Google Scholar 

  19. M. Pinsky, C. Dryzun, D. Casanova, et al., J. Comput. Chem. 29 (16), 2712 (2008).

    Article  Google Scholar 

  20. V. E. Kuz’min, I. B. Stel’mach, M. B. Bekker, and D. V. Pozigun, J. Phys. Org. Chem. 5 (6), 295 (1992).

    Article  Google Scholar 

  21. P.W. Fowler, Symmetry: Cult. Sci. 16 (4), 321 (2005).

    Google Scholar 

  22. A. V. Luzanov and D. J. Nerukh, Math. Chem. 41 (4), 417 (2007).

    Article  MathSciNet  Google Scholar 

  23. G. Raos, Macromol. Theory Simul. 11 (7), 739 (2002).

    Article  Google Scholar 

  24. G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, J. Mol. Biol. 7 (1), 95 (1963).

    Article  Google Scholar 

  25. M. Petitjean, Entropy 5, 271 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  26. R. D. B. Fraser and T. P. MacRae, Conformation in Fibrous Proteins and Related Synthetic Polypeptides (Acad. Press, New York).

  27. G. N. Phillips, Proteins 14, 425 (1992).

    Article  Google Scholar 

  28. S. Neukirch, A. Goriely, A.C. Hausrath, Phys. Rev. Lett. 100, 038105 (2008).

    Article  ADS  Google Scholar 

  29. S. W. Robinson, A. M. Afzal, and D. P. Leader, in Handbook of Pharmacogenomics and Stratified Medicine, Ed. by S. Padmanabhan (Acad. Press, New York, 2014), pp. 259–287.

    Google Scholar 

  30. J. S. Richardson, Adv. Prot. Chem. 34, 167 (1981).

    Google Scholar 

  31. P. N. Lewis, F. A. Momany, and H. A. Scheraga, Isr. J. Chem. 11, 121 (1973).

    Article  Google Scholar 

  32. C. Wilmot and J. Thornton, J. Mol. Biol. 203, 221 (1988).

    Article  Google Scholar 

  33. A. G. de Brevern, Sci. Rep. 6, 33191 (2016).

    Article  ADS  Google Scholar 

  34. E. G. Hutchinson and J. Thornton, Prot. Sci. 3, 2207 (1994).

    Article  Google Scholar 

  35. D. Ting, G. Wang, M. Shapovalov, et al., PLoS Comput. Biol. 6, e1000763 (2010).

    Article  Google Scholar 

  36. M. Shapovalov, V. Slobodan, R. L. Dunbrack, PLoS Comput. Biol. 15, e1006844 (2019).

    Article  Google Scholar 

  37. C. Fang, Y. Shang, and N. Xu, Sci. Rep. 8, 15741 (2018).

    Article  ADS  Google Scholar 

  38. M. U. Johansson, V. Zoete, O. Michielin, and N. Guex, BMC Bioinf. 13, 173 (2012).

  39. W. J. Duddy, J. W. M. Nissink, F. H. Allen, and E. J. Milner-White, Prot. Sci. 13, 3051 (2008).

    Article  Google Scholar 

  40. N. Eswar and C. Ramakrishnan, Protein Eng., Des. Sel. 12, 447 (1999).

    Article  Google Scholar 

  41. A. E. Sidorova, E. V. Malyshko, A. R. Kotov, et al., Bull. Russ. Acad. Sci.: Phys. 83 (1), 85 (2019).

    Article  Google Scholar 

  42. A. E. Sidorova, A. O. Lutsenko, D. K. Shpigun, et al., Biophysics 66, 357 (2021).

    Article  Google Scholar 

  43. A. Sidorova, E. Malyshko, A. Lutsenko, et al., Symmetry 13, 879 (2021).

    Article  ADS  Google Scholar 

  44. A. Sidorova, V. Bystrov, A. Lutsenko, et al., Nanomaterials 11 (12), (2021).

  45. V. Bystrov, A. Sidorova, A. Lutsenko, et al., Nanomaterials 11, 2415 (2021).

    Article  Google Scholar 

  46. https://www.rcsb.org/structure/2ACT

  47. M. Fodje and S. Al-Karadaghi, Protein Eng., Des. Sel. 15, 353 (2002).

    Article  Google Scholar 

  48. D. V. Nataraj, N. Srinivasan, R. Sowdhamini, and C. Ramakrishnan, Curr. Sci. 69, 434 (1995).

    Google Scholar 

  49. M. Shapovalov, V. Slobodan, and R. L. Dunbrack, PLoS Comput. Biol. 15, e1006844 (2019).

    Article  Google Scholar 

  50. RCSB PDB. Available online: https://www.rcsb.org

  51. J. F. Leszczynski and G. D. Rose, Science 234, 849 (1986).

    Article  ADS  Google Scholar 

  52. https://www.rcsb.org/structure/1BB1

  53. A. E. Sidorova, E. V. Malyshko, A. O. Lutsenko, et al., Symmetry 13 (5) (2021).

  54. CC+ Database. http://coiledcoils.chm.bris.ac.uk/ccplus/search/. Cited January 15, 2022.

  55. E. V. Malyshko, O. E. Bagrova, and V. A. Tverdislov, Biofizika 65 (3), 439 (2020).

    Google Scholar 

  56. A. S. Ivanov, Biomed. Khim. 57 (1), 31 (2011).

    Article  Google Scholar 

  57. A. E. Sidorova, N. T. Levashova, E. V. Malyshko, and V. A. Tverdislov, Moscow Univ. Phys. Bull. 74 (3), 213 (2019).

    Article  ADS  Google Scholar 

  58. Y. B. Zeldovich and D. A. Frank-Kamenetsky, Acta Physicochim. 9, 341 (1938).

    Google Scholar 

  59. A. Zaikin and A. Zhabotinsky, Nature 225, 535 (1970).

    Article  ADS  Google Scholar 

  60. V. A. Vasil’ev, Yu. M. Romanovskii, and V. G. Yakhno, Autowave Processes (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  61. R. A. FitzHugh, Biophys. J. 445 (1961).

  62. R. R. Aliev and A. V. Panfilov, Chaos, Solitons Fractals 3, 293 (1996).

    Article  ADS  Google Scholar 

  63. Yu. E. Elkin, V. N. Biktashev, and A. V. Holden, Chaos, Solitons Fractals 9 (9), 1597 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  64. Y. Kuramoto and T. Tsuzuki, Theor. Phys. 54, 687 (1975).

    Article  ADS  Google Scholar 

  65. J. M. Davidenko, A. V. Pertsov, R. Salomonsz, et al., Nature 355, 349 (1992).

    Article  ADS  Google Scholar 

  66. A. L. Hodgkin and A. F. Huxley, J. Physiol. 117, 500 (1952).

    Article  Google Scholar 

  67. D. Marquardt, SIAM J. Appl. Math. 11 (2), 431 (1963).

    Article  Google Scholar 

  68. A. M. Zhabotinsky and A. N. Zaikin, J. Theor. Biol. 40, 45 (1973).

    Article  ADS  Google Scholar 

  69. G. R. Ivanitskii, V. I. Krinskii, and E. E. Sel’kov, Mathematical Biophysics of the Cell (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  70. Dzh. Marri, Nonlinear Differential Equation in Biology (Mir, Moscow, 1983) [in Russian].

  71. V. I. Krinskii and A. V. Kholopov, Biofizika 12, 524 (1967).

    Google Scholar 

  72. O. A. Mornev, I. M. Tsyganov, O. V. Aslanidi, and M. A. Tsyganov, Pis’ma Zh. Eksp. Teor. Fis. 77 (6), 319 (2003).

    Google Scholar 

  73. L. Pauling and R. B. Corey, Proc. Natl. Acad. Sci. U. S. A. 37, 235 (1951).

    Article  ADS  Google Scholar 

  74. A. V. Finkel’shtein and O. B. Ptitsyn, Protein Physics: A Course of Lectures with Color and Stereoscopic Illustrations and Tasks (Knizhnyi dom “Universitet”, Moscow, 2012) [in Russian].

  75. A. E. Sidorova, E. V. Malyshko, A. R. Kotov, et al., Bull. Russ. Acad. Sci.: Phys. 83 (1), 85 (2019).

    Article  Google Scholar 

  76. A. E. Sidorova, E. V. Malyshko, A. R. Kotov, et al., Biophysics 64 (2), 155 (2019).

    Article  Google Scholar 

  77. H. M. Berman, et al., Nucleic Acids Res. 28, 235 (2000).

    Article  ADS  Google Scholar 

  78. Yu. A. Ovchinnikov, Bioorganic Chemistry (Prosveshchenie, Moscow, 1987) [in Russian].

  79. K. A. Zuev, N. T. Levashova, E. V. Malyshko, et al., Moscow Univ. Phys. Bull. 76 (4), 226 (2021).

    Article  ADS  Google Scholar 

  80. K. A. Zuev, N. T. Levashova, E. V. Malyshko, et al., Moscow Univ. Phys. Bull. 76 (4), 226 (2021).

    Article  ADS  Google Scholar 

  81. D. Nel’son and M. Koks, Lehninger Principles of Biochemistry, (WH Freeman, 2005).

    Google Scholar 

  82. R. Young and H. Bremer, Biochem. J. 160, 185 (1976).

    Article  Google Scholar 

  83. K. A. Zuev, N. T. Levashova, E. V. Malyshko, et al., Moscow Univ. Phys. Bull. 76 (4), 226 (2021).

    Article  ADS  Google Scholar 

  84. L. A. Nguyen, H. He, and C. Pham-Huy, Int. J. Biomed. Sci. 2 (2), 85 (2006).

    Google Scholar 

  85. E. V. Semenova, E. V. Malyshko, and V. A. Tverdislov, Aktual. Vopr. Biol. Fiz. Khim. 6 (1), 142 (2021).

    Google Scholar 

  86. E. V. Malyshko, E. V. Semenova, O. E. Bagrova, et al., Biophysica 1 (1), 22 (2021).

    Article  Google Scholar 

  87. R. Vardanyan and V. Hruby, Synthesis of Best-Seller Drugs (Acad. Press, 2016).

    Google Scholar 

  88. R. Pool, Fat: Fighting the Obesity Epidemic (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  89. Y. Horikiri, T. Suzuki, and M. Mizobe, J. Pharm. Sci. 87 (3), 289 (1998).

    Article  Google Scholar 

  90. H. Alkadi and R. Jbeily, Infect. Disord.: Drug Targets 18 (2), 88 (2018).

    Google Scholar 

  91. A. M. Evans, Clin. Rheumatol. 20 (Suppl. 1), S9 (2001).

    Article  Google Scholar 

  92. H. Beng, H. Zhang, R. Jayachandra, et al., Chirality 30, 759 (2018).

    Article  Google Scholar 

  93. G. A. Jacobson, S. Raidal, K. Robson, et al., Br. J. Clin. Pharmacol. 83, 1436 (2017).

    Article  Google Scholar 

  94. M. Singh, P. Malik, and R. Bhushan, J. Chromatogr. Sci. 54 (5), 842 (2016).

    Article  Google Scholar 

  95. E. Szoko, H. Kalasz, and K. Magyar, Eur. J. Drug Metab. Pharmacokinet. 24 (4), 315 (1999).

    Article  Google Scholar 

  96. S. A. Anttila and E. V. Leinonen, CNS Drug Rev. 7 (3), 249 (2001).

    Article  Google Scholar 

  97. Q. Zhou, T. W. Yao, and S. Zeng, World J. Gastroenterol. 7 (6), 830 (2001).

    Article  Google Scholar 

  98. H. K. Kroemer, C. Funck-Brentano, D. J. Silberstein, et al., Circulation 79 (5), 1068 (1989).

    Article  Google Scholar 

  99. C. H. Gorbitz, Acta Cryst. 74, 311 (2018).

    Google Scholar 

  100. M. Calvin, Chemical Evolution. Molecular Evolution, Towards the Origin of Living System on the Earth and Elsewhere (Claredon Press, Oxford, 1969).

    Google Scholar 

  101. A. L. Lehninger, Biochemistry. The Molecular Basis of Cell Structure and Function (Worth Publishers, New York, 1972).

    Google Scholar 

  102. V. Bystrov, Computer Simulation Nanostructures: Bioferroelectric Amino Acids. Bioferroelectricity: Peptide Nanotubes and Thymine Nucleobase (LAMBERT, 2020).

    Google Scholar 

  103. V. S. Bystrov, I. K. Bdikin, and B. Singh, Nanomaterials Sci. Eng. 2 (1), 11 (2020)

    Google Scholar 

  104. V. S. Bystrov and S. V. Filippov, “Computer modeling and numerical studies of peptide nanotubes based on diphenylalanine,” Preprint IPM, No. 78 (2021).

  105. V. S. Bystrov, P. S. Zelenovskiy, A. S. Nuraeva, et al., Math. Biol. Bioinf. 14 (1), 94 (2019).

    Article  Google Scholar 

  106. V. S. Bystrov, P. S. Zelenovskiy, A. S. Nuraeva, et al., J. Mol. Model. 25 (199), 18 (2019).

    Article  Google Scholar 

  107. P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, et al., Cryst. Growth Des. 19, 6414 (2019).

    Article  Google Scholar 

  108. V. Bystrov, J. Coutinho, P. Zelenovskiy, et al., Nanomaterials 10 (10), 1999 (2020).

    Article  Google Scholar 

  109. V. S. Bystrov, P. S. Zelenovskiy, A. S. Nuraeva, et al., Math. Biol. Bioinf. 14 (1), 94 (2019).

    Article  Google Scholar 

  110. I. V. Likhachev and V. S. Bystrov, Math. Biol. Bioinf. 16 (2), 244 (2021).

    Article  Google Scholar 

  111. V. A. Tverdislov, E. V. Malyshko, and S. A. Il’chenko, Izv. Ross. Akad. Nauk: Ser. Fiz. 79 (12), 1728 (2015).

    Google Scholar 

Download references

Funding

The research was carried out with the financial support of the Foundation for the Development of Theoretical Physics and Mathematics “BASIS” within projects no. 21-2-9-42-1 (to E.V. Semenova) and no. 21-2-1-14-1 (to O.E. Bagrova), as well as the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University “Fundamental and Applied Space Research”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sidorova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans or animals as research objects.

Additional information

Translated by E. Puchkov

Abbreviations: PDB, Protein Data Bank; PNT, peptide nanotube.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tverdislov, V.A., Sidorova, A.E., Bagrova, O.E. et al. Chirality As a Symmetric Basis of Self-Organization of Biomacromolecules. BIOPHYSICS 67, 673–691 (2022). https://doi.org/10.1134/S0006350922050190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922050190

Keywords:

Navigation