Skip to main content
Log in

Gold Nanoparticles as Potential Radiosensitizing and Cytotoxic Agents

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—This review summarizes the data on the radiosensitizing properties and cytotoxic activity of gold nanoparticles obtained in studies of experimental tumor models. Plausible mechanisms that underlie the observed effects are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. V. Kanaev, Prakt. Ned. 9, 1 (2008).

    Google Scholar 

  2. K. Bromma and D. B. Chithani, Nanomaterials (Basel) 10, 1671 (2020).

    Article  Google Scholar 

  3. Y. Chen, J. Yang, S. Fu, and J. Wu, Int. J. Nanomedicine 15, 9407 (2020).

    Article  Google Scholar 

  4. S. Siddique and C. L. Chow, Appl. Sci. 10, 3824 (2020).

    Article  Google Scholar 

  5. W. Najahi-Missaui, R. D. Arnold, and B. Cummings, Int. J. Mol. Sci. 22, 385 (2021).

    Article  Google Scholar 

  6. E. Porret, X. L. Guevel, and J. L. Coll, J. Mater. Chem. 13, 2216 (2020).

    Google Scholar 

  7. C. Gerosa, G. Crisponi, V. M. Nurchi, et al., Pharmaceuticals 13, 192 (2020).

    Article  Google Scholar 

  8. J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, Phys. Med. Biol. 49, 309 (2004).

    Article  Google Scholar 

  9. F. Geng, K. Song, J. Z. Xing, et al., Nanotechnology 22, 501 (2011).

    Article  Google Scholar 

  10. M. Shi, B. Paquette, T. Thippayamentri, et al., Int. J. Nanomedicine 11, 5323 (2016).

    Article  Google Scholar 

  11. S. Her, D. A. Jaffray, and C. Allen, Adv. Drug Delivery Rev. 109, 84 (2017).

    Article  Google Scholar 

  12. S. Rosa, C. Connolly, G. Schettino, et al., Cancer Nanothechnol. 8, 2 (2017).

    Article  Google Scholar 

  13. M. Y. Chang, Y. H. Shiau, C. J. Chang, et al., Cancer Sci. 99, 1479 (2008).

    Article  Google Scholar 

  14. W. Roia, X. Zhang, L. Guo, et al., Nanothechnology 20, 5101 (2009).

    Google Scholar 

  15. S. Penninckx, A. C. Heuskin, C. Michiels, and S. Lucas, Cancer (Basel) 12, 2021 (2020).

    Article  Google Scholar 

  16. X. Bai, Y. Wang, Z. Song, et al., Int. J. Mol. Sci. 21, 2480 (2020).

    Article  Google Scholar 

  17. A. Vilchis-Juarez, G. Ferro-Flores, S. Santos-Cuevas, et al., Biomed. Nanotechnol. 10, 393 (2014).

    Article  Google Scholar 

  18. S. Shrestha, L. N. Cooper, O. A. Andreev, et al., Jacobs J. Radiat. Oncol. 3, 026 (2016).

  19. W. Cai, T. Cao, H. Hong, and J. Sun, Nanothenol. Sci. Appl. 1, 17 (2008).

    Article  Google Scholar 

  20. Y. Tang, Y. Shen, L. Huang, et al., Environ. Toxicol. Pharmacol. 39, 871 (2015).

    Article  Google Scholar 

  21. R. I. Beelbeco, H. Korideck, W. Ngwa, et al., Rad. Res. 178, 604 (2012).

    Article  Google Scholar 

  22. W. Ngwa, R. Kumar, S. Sridhar, et al., Nanomedicine (London) 9, 1063 (2014).

    Article  Google Scholar 

  23. E. Connor, J. Nwamuka, H. Gole, et al., Small 1, 325 (2005).

    Article  Google Scholar 

  24. Y. Pan, S. Neuss, A. Leifert, et al., Small 3, 1941 (2007).

    Article  Google Scholar 

  25. S. Jain, M. B. Bch, D. G. Hirst, and L. M. O`Sullivan, Br. J. Radiol. 85, 101 (2012).

    Article  Google Scholar 

  26. A. M. Alkilany and C. J. Murphy, J. Nanopart. Res. 12, 2313 (2010).

    Article  ADS  Google Scholar 

  27. V. N. Morozov, A. V. Belousov, V. I. Zverev, et al., Biophysics (Moscow) 65 (4), 533 (2020).

    Article  Google Scholar 

  28. J. Zheng, D. J. Hunting, P. Ayotte, and L. Sanche, Radiat. Res. 169, 19 (2008).

    Article  ADS  Google Scholar 

  29. C. J. Liu, C. Y. Wang, S. T. Cheng, et al., Phys. Med. Biol. 55, 931 (2010).

    Article  Google Scholar 

  30. J. Scheumann, R. Berbeco, B. D. Chithrani, et al., Int. J. Radiat. Oncol. Biol. Phys. 94, 189 (2016).

    Article  Google Scholar 

  31. F. Xiao, J. Zheng, P. Cloutier, et al., Nanothechnology 22, 465101 (2011).

    Article  Google Scholar 

  32. K. T. Buttarworth, J. McMahon, F. J. Curreli, and K. M. Prise, Nanoscale 4, 4830 (2012).

    Article  ADS  Google Scholar 

  33. S. Farahani, N. P. Alam, S. Haghgoo, et al., J. Biomed. Phys. Engl. 9, 199 (2019).

    Google Scholar 

  34. D. B. Chithrani, S. Jelveh, F. Jalali, et al., Radiat. Res. 173, 719 (2010).

    Article  ADS  Google Scholar 

  35. L. E. Taggart, S. J. McMahon, K. T. Butterworth, et al., Nanotechnology 27, 215001 (2016).

    Article  Google Scholar 

  36. P. Jawaid, M. Rehman, and Q. L. Zhao, Cell Death Discov. 6, 83 (2020).

    Article  Google Scholar 

  37. S. Penninckx, A. C. Yeuskin, C. Michiels, and S. Lucas, Nanomedicine (London) 13, 2917 (2018).

    Article  Google Scholar 

  38. K. Rieck, K. Bromma, W. Sung, et al., Br. J. Radiol. 92, 1100 (2019).

    Article  Google Scholar 

  39. C. Wang, Y. Jiang, X. Li, and L. Hu, Breast Cancer 22, 413 (2015).

    Article  Google Scholar 

  40. B. P. Coughlin, P. T. Lawrence, I. Lui, et al., J. Nanopart. Res. 22, 53 (2020).

    Article  ADS  Google Scholar 

  41. N. Ma, P. Liu, N. He, et al., ACS Appl. Mater. Interfaces 9, 31526 (2017).

    Article  Google Scholar 

  42. L. Cui, K. Tse, P. Zahedi, et al., Radiat. Res. 182, 475 (2014).

    Article  ADS  Google Scholar 

  43. J. F. Hainfeld, H. M. Smilovitz, M. J. O`Connor, et al., Nanomedicine 8, 1601 (2013).

    Article  Google Scholar 

  44. S. Jain, J. A. Coulter, A. R. Hounsell, et al., Int. J. Rad. Oncol. Biol. Phys. 79, 531 (2011).

    Article  Google Scholar 

  45. S. Yook, Z. Cai, Y. Lu, et al., J. Nucl. Med. 57, 936 (2016).

    Article  Google Scholar 

  46. Y. S. Chen, Y. C. Hung, I. Lian, and G. S. Huang, Nanoscale Res. Lett. 4, 858 (2009).

    Article  ADS  Google Scholar 

  47. G. Maltzahn, J. H. Park, A. Agrawal, et al., Cancer Res. 69, 3892 (2009).

    Article  Google Scholar 

  48. T. Kong, J. Zeng, X. Wang, et al., Small 4, 1537 (2008).

    Article  Google Scholar 

  49. N. Ma, F. G. Wu, X. Zhang, et al., ACS Appl. Mater. Interfaces 9, 13037 (2017).

    Article  Google Scholar 

  50. M. Enferadi, S. Y. Fu, J. H. Heng, et al., Int. J. Radiat. Biol. 94, 124 (2018).

    Article  Google Scholar 

  51. C. Villiers, H. Freitas, R. Couderc, et al., J. Nanopart. Res. 12, 55 (2010).

    Article  ADS  Google Scholar 

  52. S. Li, S. Bouchy, S. Penninckx, et al., Nanomedicine (London) 14, 317 (2019).

    Article  Google Scholar 

  53. A. Popovtzer, A. Mizrachi, M. Moteli, et al., Nanoscale 8, 2678 (2016).

    Article  ADS  Google Scholar 

  54. S. S. Mehrnia, B. Hashemi, S. J. Mowia, et al., Radiat. Oncol. 16, 33 (2021).

    Article  Google Scholar 

  55. M. Kashin, Y. Kakei, S. Teraoka, et al., Biomed. Res. Int. 2020, 1281645 (2020).

    Article  Google Scholar 

  56. N. H. Koonce, M. C. Quick, M. E. Hardel, et al., Int. J. Radiat. Oncol. Biol. Phys. 93, 588 (2015).

    Article  Google Scholar 

  57. T. Wolfe, D. Chatteriee, J. Lee, et al., Nanomedicine 11, 1277 (2015).

    Article  Google Scholar 

  58. X. D. Zhang, D. Wu, X. Shen, et al., Biomaterials 33, 6408 (2012).

    Article  Google Scholar 

  59. V. Lin, S. McMahon, H. Paganetti, and J. Schuemann, Phys. Med. Biol. 60, 4149 (2015).

    Article  Google Scholar 

  60. B. Janic, S. L. Brown, R. Nelf, et al., Cancer Biol. Ther. 22, 124 (2021).

    Article  Google Scholar 

  61. S. Li, S. Penninckx, L. Karmani, et al., Nanotechnology 27, 455101 (2016).

    Article  ADS  Google Scholar 

  62. N. Chen, W. Yang, Y. Bao, et al., RSC Adv. 5, 40514 (2015).

    Article  ADS  Google Scholar 

  63. J. F. Hainfeld, F. A. Dilmanian, Z. Zhong, et al., Phys. Med. Biol. 55, 3045 (2010).

    Article  Google Scholar 

  64. M. Mousavi, H. A. Nedali, S. Khoei, et al., Int. J. Radiol. Biol. 93, 214 (2017).

    Article  Google Scholar 

  65. L. Taggart, S. I. McMahon, F. J. Currell, et al., Cancer Nanotechnol. 5, 5 (2014).

    Article  Google Scholar 

  66. M. Zabihzadeh, M. Hoseini-Chahfarokhi, V. Bayati, et al., Nanomedicine 5, 111 (2018).

    Google Scholar 

  67. X. Zhang, J. Z. Xing, J. Chen, et al., Clin. Invest. Med. 31, 3 (2008).

    Google Scholar 

  68. X. D. Zhang, Z. Luo, J. C. Chen, et al., Adv. Mater. 26, 456 (2014).

    Google Scholar 

  69. X. D. Zhang, Z. Luo, J. Chen, et al., Sci. Rep. 5, 8669 (2015).

    Article  Google Scholar 

  70. S. Liu, J. Piao, Y. Liu, et al., Nanomedicine (London) 13, 1371 (2018).

    Article  Google Scholar 

  71. D. B. Korman, L. A. Ostrovskaya, and V. A. Kuz’min, Vopr. Onkol., No. 6, 78 (2018).

  72. L. A. Ostrovskaya, D. B. Korman, N. V. Blyukhterova, et al., Ross. Bioterapevt. Zh. 19 (4), 74 (2020).

    Google Scholar 

  73. K. A. Abzaeva, L. V. Zhilitskaya, G. G. Belozerskaya, et al., Izv. Akad. Naik, Ser. Khim. 66 (12), 2314 (2017).

    Google Scholar 

  74. R. Ahmad, G. Schettino, G. Royle, et al., Part. Part. Syst. Charact. 37, 1900411 (2020).

    Article  Google Scholar 

  75. K. T. Butterworth, J. A. Coulter, S. Jain, et al., Nanotechnology 21, 295101 (2010).

    Article  Google Scholar 

  76. D. B. Korman, L. A. Ostrovskaya, and V. A. Kuz’min, Biophysics (Moscow) 64 (3), 431 (2019).

    Article  Google Scholar 

  77. J. J. Li, D. Hartono, C. Orig, et al., Biomaterials 31, 5996 (2010).

    Article  Google Scholar 

  78. Y. J. Gu, J. Cheng, C. C. Lin, et al., Toxicol. Appl. Pharmacol. 237, 196 (2009).

    Article  Google Scholar 

  79. M. Musielak, A. Bos-Liedke, I. Piotrowski, et al., Int. J. Mol. Sci. 22, 16 (2021).

    Article  Google Scholar 

  80. J. C. Dellavechia, B. T. Steiuer, M. L. Freitas, et al., J. Nanoparticle Res. 22, 133 (2020).

    Article  ADS  Google Scholar 

  81. A. Chakraborty, A. Das, S. Raha, and A. Burui, J. Photochem. Photobiol. B: Biol. 203, 11778 (2020).

    Article  Google Scholar 

  82. Y. Pan, A. Leifert, D. Ruan, et al., Small 5, 20657 (2009).

    Google Scholar 

  83. R. Liu, Y. Wang, Q. Yuan, et al., Chem. Commun. 50, 10687 (2014).

    Article  Google Scholar 

  84. M. A. Mackey, F. Saira, M. A. Mahmond, and M. A. El-Sayed, Bioconijugate Chem. 24, 897 (2013).

    Article  Google Scholar 

  85. B. Kang, M. A. Mackey, and M. A. El-Sayed, J. Amer. Chem. Soc. 132, 1517 (2010).

    Article  Google Scholar 

  86. L. Ding, C. Yao, X. Yin, et al., Small 14, e1801451 (2018).

    Article  Google Scholar 

  87. J. Bugno, M. J. Pollemann, and K. Sokolowski, Nanomedicine 21, 102059 (2019).

    Article  Google Scholar 

  88. D. B. Chithrani, Mol. Membrane Biol. 27, 299 (2010).

    Article  Google Scholar 

  89. M. Tsoli, H. Kuhn, W. Brandau, et al., Small 1, 841 (2005).

    Article  Google Scholar 

  90. P. Navito, I. Prior, and M. Brust, ACS Nano 2, 1639 (2008).

    Article  Google Scholar 

  91. J. Lee, D. Lilly, R. C. Doty, et al., Small 5, 1213 (2009).

    Google Scholar 

  92. W. S. Cho, M. Cho, J. Jeong, et al., Toxicol. Pharmacol. 245, 116 (2010).

    Article  Google Scholar 

  93. W. H. De Yong, W. I. Haggens, P. I. Krystek, et al., Biomaterials 29, 1913 (2008).

    Google Scholar 

  94. C. Lasagna-Reeves, D. Gonzalez-Romero, M. A. Barria, et al., Biochem. Biophys. Res. Commun. 3939, 649 (2010).

    Article  Google Scholar 

  95. M. A. Abdelhalini and B. M. Jarrar, J. Nanobiotechnol. 10, 5 (2012).

  96. W. S. Cho, M. Cho, J. Jeong, et al., Toxicol. Appl. Pharmacol. 236, 16 (2009).

    Article  Google Scholar 

  97. C. Rambanapasi, R. Zeevaart, H. Buntting, et al., Molecules 21, 763 (2016).

    Article  Google Scholar 

  98. J. H. Lee, J. H. Sung, H. R. Ryn, et al., Arch. Toxicol. 92, 1393 (2018).

    Article  Google Scholar 

  99. J. F. Hillyer and R. M. Albrecht, J. Pharm. Sci. 90, 1927 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Korman.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by V. Gulevich

Abbreviations: GNs, gold nanoparticles; BC, breast carcinoma; CC, colorectal cancer; PC, prostate cancer; HNSCC, head and neck squamous cell carcinoma; EPR, enhanced permeability and retention; DIF, dose increase factor; ROS, reactive oxygen species; EGFR, epidermal growth factor receptor; PGNs, pegylated gold nanoparticles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korman, D.B., Ostrovskaya, L.A., Bluhterova, N.V. et al. Gold Nanoparticles as Potential Radiosensitizing and Cytotoxic Agents. BIOPHYSICS 66, 1046–1058 (2021). https://doi.org/10.1134/S0006350921060063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921060063

Navigation