Skip to main content
Log in

The Active and Passive Components of Neuronal Excitation and its Glial Support

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Excitation mechanisms in the nervous system and neuronal–glial interactions involved in this process are described on the basis of published data and original findings. Two processes, passive and active, form excitation in the nervous system. The active type of excitation requires energy support and is associated with the regulation of the membrane properties of neurons, leading to generation of variable spontaneous pulses. Spike activity generated by the passive process is highly stable and results from transmembrane movement of Na+ and K+ ions along their concentration gradients. The passive type of excitation is due to glutamatergic contacts; the active type of excitation is due to a diffuse release of acetylcholine from cholinergic nuclei of the brain and attenuation of K+ membrane permeability. Energy supply of the active excitation process involves glia. Glial cells directly interact with brain vessels, accumulate glucose in the form of glycogen, realise glycolysis as the first step of energy metabolism, and regulate local cerebral blood flow coupled with M-cholinergic excitation of neurons. A steady decrease in the rate of the M-cholinergic process (in terms of concentration, temperature, or energy) leads to a rapid outflow of K+ ions from neurons, and removing K+ from the intercellular environment is also a function of glia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. B. A. Barres, Neuron 60 (6), 430 (2008).

    Article  Google Scholar 

  2. J. B. Zuchero and B. A. Barres, Development 142, 3805 (2015).

    Article  Google Scholar 

  3. Yu. V. Natochin, Herald Russ, Acad. Sci. 77 (6), 581 (2007).

    Article  Google Scholar 

  4. P. Kofuji and E. A. Newman, Neuroscience 129, 1045 (2004).

    Article  Google Scholar 

  5. A. L. Hodgkin and A. F. Huxley, J. Physiol. 117 (3), 500 (1952).

    Article  Google Scholar 

  6. D. A. Brown, Trends Neurosci. 6 (8), 302 (1983).

    Article  Google Scholar 

  7. F. F. Weight, J. A. Schulman, P. A. Smith, et al., Fed. Proc. 38 (7), 2084 (1979).

    Google Scholar 

  8. L. Kaczmarek, M. Kossut, and J. Skangiel-Kramska, Physiol. Rev. 77 (1), 217 (1997).

    Article  Google Scholar 

  9. N. Hori, T. Galeno, and D. O. Carpenter, Cell. Mol. Neurobiol. 7 (1), 73 (1987).

    Article  Google Scholar 

  10. V. P. Reutov, N. V. Samosudova and E. G. Sorokina, Biophysics (Moscow) 64 (2), 233 (2019).

    Article  Google Scholar 

  11. A. Ames III, Brain Res. Rev. 34, 42 (2000).

    Article  Google Scholar 

  12. S. B. Laughlin and D. Attwell, in Brain Energetics and Neuronal Activity: Applications to fMRI and Medicine, Ed. by R. G. Shulman and D. L. Rothman (Wiley, Chichester, 2004), pp. 111–124.

    Google Scholar 

  13. M. T. T. Wong-Riley, Trends Neurosci. 12, 94 (1989).

    Article  Google Scholar 

  14. J. Eccles, The Physiology of Synapses (Elasevier–Academic, 1964; Mir, Moscow, 1966).

  15. S. R. Williams and G. J. Stuart, Science 295, 1907 (2002).

    Article  ADS  Google Scholar 

  16. R. J. MacGregor, Biophys. J. 8 (3), 305 (1968).

    Article  ADS  Google Scholar 

  17. N. B. Pasikova, Yu. S. Mednikova, D. N. Voronkov, et al., Morfologiya 141 (1), 33 (2012)

    Google Scholar 

  18. W. Rall, in Excitatory Synaptic Mechanisms, Ed. by P. Andersen and J. K. S. Jansen (Universitetsforlaget, Oslo, 1970), pp. 175–187.

    Google Scholar 

  19. W. Rall, R. E. Burke, W. R. Holmes, et al. Physiol. Rev. 72 (Suppl.), S159 (1992).

    Article  Google Scholar 

  20. B. B. Shul’govskii, A. A. Moskvitin, and B. I. Kotlyar, Neirofiziologiya 7 (5), 468 (1975).

    Google Scholar 

  21. R. Iansek and S.J. Redman, J. Physiol. 234, 665 (1973).

    Article  Google Scholar 

  22. Yu. S. Mednikova, N. M. Zakharova, N. V. Pasikova, and D. N. Voronkov, J. Evol. Biochem. Physiol. 53 (4), 331 (2017).

    Article  Google Scholar 

  23. E. Henneman, Science 126, 1345 (1957).

    Article  ADS  Google Scholar 

  24. J. Bastian and J. Nguyenkim, J. Neurophysiol. 85, 10 (2001).

    Article  Google Scholar 

  25. A. M. Hattox and S. B. Nelson, J. Neurophysiol. 98, 3300 (2007).

    Article  Google Scholar 

  26. Ya. Kawaguchi, J. Neurophysiol. 69 (2), 416 (1993).

    Article  Google Scholar 

  27. P. Medini, Neuroscience 190, 112 (2011).

    Article  Google Scholar 

  28. J. Kang, J. R. Huguenard, and D. A. Price, J. Neurophysiol. 76, 188 (1996).

    Article  Google Scholar 

  29. K.-R. Kim, S. Y. Lee, S. H. Yoon, et al., J. Neurosci. 40 (11), 2200 (2020).

    Article  Google Scholar 

  30. R. M. Leao, L. Shuang, B. Doiron, et al., J. Neurophysiol. 107, 3008 (2012).

    Article  Google Scholar 

  31. D. A. McCormick, B. W. Connors, W. Lighthall, et al., J. Neurophysiol. 54 (4), 782 (1985).

    Article  Google Scholar 

  32. K. Krnjević, R. Pumain, and L. Renaud, J. Physiol. 215 (1), 247 (1971).

    Article  Google Scholar 

  33. D. A. McCormick and D. A. Prince, J. Physiol. 375, 169 (1986).

    Article  Google Scholar 

  34. E. V. Zeimal’ and S. A. Shelkovnikov, Muscarinic Cholinoreceptors (Nauka, Leningrad, 1989) [in Russian].

    Google Scholar 

  35. P. R. Adams, D. A. Brown, and A. Constanti, J. Physiol. 332, 223 (1982).

    Article  Google Scholar 

  36. D. A. Brown, in Fast and Slow Chemical Signaling in the Nervous System, Ed. by L. L. Iversen and E. Goodman (Oxford Univ. Press, Oxford, 1986), pp. 130–150.

    Google Scholar 

  37. M. O. Samoilov, Zh. Evol. Biokhim. Fiziol. 28 (2), 156 (1992).

    Google Scholar 

  38. D. A. Brown, F. C. Abogadie, T. G. J. Allen, et al., Life Sci. 60 (13–14), 1137 (1997).

  39. B. V. Chernyshev, V. I. Maiorov, and A. A. Moskvitin, Zh. Vyssh. Nerv. Deyat. 48 (1), 99 (1998).

    Google Scholar 

  40. J. M. H. ffrench-Mullen, N. Hori, H. Nakanishi, et al., Cell. Mol. Neurobiol. 3 (2), 163 (1983).

  41. J. M. Godfraind, H. Kawamura, K. Krnjević, et al., J. Physiol. 215, 199 (1971).

    Article  Google Scholar 

  42. T. G. Borda, A. M. Genaro, and G. Mremaschi, Cell. Mol. Neurobiol. 20 (3), 255 (2000).

    Article  Google Scholar 

  43. Y. S. Mednikova, M. K. Kozlov, and A. N. Makarenko, J. Behav. Brain Sci. 9, 33 (2019).

    Article  Google Scholar 

  44. L. Sokoloff, in Brain Energetics and Neuronal Activity. Applications to FMRI and Medicine, Ed. by R. G. Shulman and D. L. Rothman (Wiley, Chichester, 2004), pp. 11–30.

    Google Scholar 

  45. H. M. Magoun, The Waking Brain (Douglas Books, Tunbridge Wells, 1958; Inostrannaya Literatura, Moscow, 1961).

  46. P. Bentley, J. Driver, and R. Dolan, Progr. Neurobiol. 94 (4), 360 (2011).

    Article  Google Scholar 

  47. M.-M. Mesulam, E. J. Mufson, B. H. Wainer, et al., Neuroscience 10 (4), 1185 (1983).

    Article  Google Scholar 

  48. O. A. Gomazkov, Astrocytes: The Stars that Control the Brain (IKAR, Moscow, 2018) [in Russian].

    Google Scholar 

  49. V. N. Mats, Neuroglial Relationships in the Neurocortex during Training (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  50. M. Hanani and D. C. Spray, Nature Rev. 21, 485 (2020).

    Article  Google Scholar 

  51. K. Meyer and B. K. Kaspar, Brain Res. 1656, 27 (2017).

    Article  Google Scholar 

  52. N. Rouach and C. Giaume, Prog. Brain Res. 132, 203 (2001).

    Article  Google Scholar 

  53. A. Verkhratsky, J. J. Rodriguez, and V. Parpura, Future Neurol. 8 (2), 149 (2013).

    Article  Google Scholar 

  54. E. E. Benarroch, Mayo Clin. Proc. 80 (10), 1326 (2005).

    Article  Google Scholar 

  55. A. Rodriguez and A. Ortega, Am. J. Neurosci. 3 (3), 32 (2012).

    Google Scholar 

  56. A. S. Buosi, I. Matias, A. P. B. Araujo, et al., Mol. Neurobiol. 55 (1), 751 (2018).

    Article  Google Scholar 

  57. M. Tsacopoulos, J. A. Coles, and G. Van der Werve, J. Physiol. (Paris) 82, 279 (1987).

    Google Scholar 

  58. M. Tsacopoulos and P. F. Magistretti, J. Neurosci. 16 (3), 877 (1996).

    Article  Google Scholar 

  59. L. H. Bergersen, Neuroscience 145, 11 (2007).

    Article  Google Scholar 

  60. A. Falkowska, I. Gutowska, M. Goschorska, et al., Int. J. Mol.Sci. 16, 25959 (2015).

    Article  Google Scholar 

  61. K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, et al., Science 305, 99 (2004).

    Article  ADS  Google Scholar 

  62. L. Pellerin and P. J. Magistretti, Science 305 (5680), 50 (2004).

    Article  Google Scholar 

  63. G. A. Dienel and N. F. Cruz, Metab. Brain Dis. 30 (1), 281 (2015).

    Article  Google Scholar 

  64. R. A. Swanson, M. M. Morton, S. R. Sagar, et al., Neuroscience 51 (2), 451 (1992).

    Article  Google Scholar 

  65. J. Kong, P. N. Shepel, C. P. Holden, et al., J. Neurosci. 22 (13), 5581 (2002).

    Article  Google Scholar 

  66. G. A. Dienel, Neurosci. Lett. 637, 18 (2017).

    Article  Google Scholar 

  67. P. G. Haydon and G. Carmignoto, Physiol. Rev. 86 (3), 1009 (2006).

    Article  Google Scholar 

  68. K. P. Ivanov, Fundamentals of BodyEnergetics: Theoretical and Practical Aspects, Vol. 4: Energy Resources of the Body and Physiology of Survival (Nauka, St. Petersburg, 2004) [in Russian].

  69. R. Jolivet, P. J. Magistretti, and B. Weber, Front. Neuroenergetics 1, Art. 4 (2009).

    Article  Google Scholar 

  70. Yu. S. Mednikova, N. V. Pasikova, A. V. Isakova, and F. V. Kopytova, Neurochem. J. 2 (1–2), 115 (2008).

  71. M. Sild, M. R. Van Horn, A. Schohl, et al., J. Neurosci. 36 (19), 5279 (2016).

    Article  Google Scholar 

  72. A. Verkhratsky and Ch. Steinhauser, Brain Res. Rev. 32, 380 (2000).

    Article  Google Scholar 

  73. G. Perea and A. Araque, Brain Res. Rev. 63, 93 (2010).

    Article  Google Scholar 

  74. Yu-Wei Wu, S. Gordleeva, X. Tang, et al., Glia 67, 246 (2019).

    Article  Google Scholar 

  75. N. Bazargani and D. Attwell, Nature Neurosci. 19, 182 (2016).

    Article  Google Scholar 

  76. I. Patrushev, N. Gavrilov, V. Turlapov, et al., Cell Calcium 54, 343 (2013).

    Article  Google Scholar 

  77. J. W. Deitmer, K. Singaravelu, and Ch. Lohr, in Astrocytes in (Patho)Physiology of the Nervous System, Ed. by V. Parpura and P. G. Haydon (Springer, LLC, 2009), Chapter 8, pp. 201–224.

    Google Scholar 

  78. G. Dupont and A. Goldbeter, Cell Calcium 14, 311 (1993).

    Article  Google Scholar 

  79. I. Vansetta and A. Grinvald, Science 286, 1555 (1999).

    Article  Google Scholar 

  80. P. Lipton, Physiol. Rev. 79, 1431 (1999).

    Article  Google Scholar 

  81. I. N. Bogolepova and L. I. Malofeeva, Structural Asymmetry of Cortical Formations in the Human Brain (RUDN, Moscow, 2003) [in Russian].

  82. Ed. V. Evarts, J. Neurophysiol. 29 (6), 1011 (1966).

  83. P. Kofuji and E. A. Newman, in Astrocytes in (Patho)Physiology of the Nervous System, Ed. by V. Parpura and P. G. Haydon (Springer, LLC, 2009), p. 151.

    Google Scholar 

  84. C. Largo, P. Cuevas, G. G. Somjen, et al., J. Neurosci. 16 (3), 1219 (1996).

    Article  Google Scholar 

  85. S. Duffy and B. A. MacVicar, Neuroscience 61 (1), 51 (1994).

    Article  Google Scholar 

  86. E. Dossi, F. Vasile, and N. Rouach, Brain Res. Bull. 136, 139 (2018).

    Article  Google Scholar 

  87. L. D. Lukyanova, Signal Mechanisms of Hypoxia (Russ. Acad. Sci., Moscow, 2019) [in Russian].

    Google Scholar 

  88. V. F. Fokin and N. V. Ponomareva, Energy Physiology of the Brain (Antidor, Moscow, 2003) [in Russian].

    Google Scholar 

  89. J. P. Schade and D. H. Ford, Basic Neurology, 2nd ed. (Elsevier, Amsterdam, 1973; Mir Moscow, 1976).

  90. J. T. Coyle, D. L. Price, and M. R. Delong, Science 219 (4589), 1184 (1983).

    Article  ADS  Google Scholar 

  91. I. N. Bogolepova, L. I. Malofeeva, and P. A. Agapov, Brain Aging in Men and Women (Russ. Acad. Sci., Moscow, 2019) [in Russian].

    Google Scholar 

  92. F. Marrozu, Ch. Portas, M. S. Mascia, et al., Brain Res. 671 (2), 329 (1995).

    Article  Google Scholar 

  93. Yu. S. Mednikova and N. V. Pasikova, Ross. Fiziol. Zh. 90 (2), 193 (2004).

    Google Scholar 

  94. Yu. S. Mednikova, N. V. Pasikova, N. M. Zakharova, et al., Ross. Fiziol. Zh. 100 (9), 1008 (2014).

    Google Scholar 

Download references

Funding

This work received long-term support from the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Mednikova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: EPSP, excitatory postsynaptic potential.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mednikova, Y.S., Voronkov, D.N., Khudoerkov, R.M. et al. The Active and Passive Components of Neuronal Excitation and its Glial Support. BIOPHYSICS 66, 642–656 (2021). https://doi.org/10.1134/S0006350921040126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921040126

Navigation