Skip to main content
Log in

Substantiation of a New Method for Diagnosing Ciliary Body Microcirculatory Ischemia by Determining a Decreased Level of Diastolic Perfusion Pressure in its Metarterioles

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The ability to diagnose ciliary body microcirculatory ischemia by determining a decreased (below 35.0 mm Hg) level of diastolic ocular perfusion pressure in its metarterioles was theoretically substantiated. This corresponds to the level of an increase in the intraocular pressure induced by local vacuum compression of the eye, during which a decrease in the amplitude of the blood filling pulse fluctuations is registered rheographically. According to the utility model, by applying a perilimbal vacuum-compression ring of original construction (pat. UA 112192) with rheographic electrodes mounted in the base, the diastolic ocular perfusion pressure is determined only in arterioles included in the regional system of the ciliary body microcirculation. The aqueous secretion and outflow of moisture briefly proportionally decreases with the preservation of an unchanged eye volume. The calculation of the level of the increase in the intraocular pressure by the degree of the applied vacuum VAC and the eye diameter D is carried out according to the formula \(K\frac{{VAC}}{{{{D}^{4}}}}\), where the coefficient K is determined by the size of a particular vacuum-compression ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Alm, in Adler’s Physiology of the Eye, Ed. by W. M. Hart (Mosby Press, St. Louis, 1992), pp. 198–227.

    Google Scholar 

  2. A. A. Alexandrov and I. I. Tchukaeva, Rational Pharmacother. Cardiol., No. 1, 48 (2007)

  3. V. V. Vit, The Structure of the Human Visual System (Astroprint. Odessa, 2003) [in Russian].

    Google Scholar 

  4. G. T. Dorner, E. Polska, G. Garhofer, et al., Curr. Eye Res. 25, 3415 (2002).

    Article  Google Scholar 

  5. G. Michelson and Schuierer G., Fortschr. Ophthalmol. 88, 687 (1991).

    Google Scholar 

  6. A. Ya. Bunin, Eye Hemodynamics and Methods for Its Study (Meditsina, Moscow, 1971) [in Russian].

    Google Scholar 

  7. G. A. Cioffi, E. Granstam, and A. Alm, in Adler’s Physiology of the Eye, Ed. by P. L. Kaufmann and A. Alm (Mosby Press, London, 2003), pp. 747–784.

    Google Scholar 

  8. A. Lobstein and F. Herr , Ann. Oculist. (Paris) 199, 38–69 (1966).

    Google Scholar 

  9. V. V. Egorov, E L. Sorokin, and G. P. Smolyakova, RF Patent No. RU 2166908 (2001).

  10. O. B. Udovichenko and M. A. Kolesnikova, RF Patent No. RU 2 318 431 (2008).

  11. V. A. Machekhin, Vestn. Orenburg. Gos. Univ. 173 (12), 212 (2014).

    Google Scholar 

  12. S. V. Balalin, V. N. Bogdanov, and L. N. Boriskina, RF Patent No. RU 2 293 509 (2007).

  13. V. P. Fokin, S. B. Balalin, and V. N. Bogdanov, RF Patent No. RU 2 425 622 (2011).

  14. I. A. Gndoyan, T. N. Shinkarebko, L. G. Ovchinnikov, and A. V. Nikitin, RF Patent No. RU 2 345 700 (2009).

  15. Ch. Ulrich and W.-D. Ulrich., Ophthalmik Res. 17, 308 (1985).

    Article  Google Scholar 

  16. F. Strik, Document. Ophthalmol. 69, 51 (1988).

    Article  Google Scholar 

  17. J. T. Ernest, D. Archer, and A. E. Krill, Invest. Ophthalmol. 11 (1), 29 (1972).

    Google Scholar 

  18. O. G Koval’chuk, Ukraine Patent No. UA 112192 (2016).

  19. J. M. Tielsch, J. Katz, A. Sommer, et al., Arch. Ophthalmol. 113, 216 (1995).

    Article  Google Scholar 

  20. L. Bonomi, G. Marchini, M. Marraffa, et al., Ophthalmology 107, 1287 (2000).

    Article  Google Scholar 

  21. H. A. Quigley, S. K. West, J. Rodriguez, et al., Arch. Ophthalmol. 119, 1819 (2001).

    Article  Google Scholar 

  22. F. Memarzadeh, M. Ying-Lai, J. Chung, et al., Invest. Ophthalmol. Vis. Sci. 51 (6), 2872 (2010).

    Article  Google Scholar 

  23. M. C. Leske, S.-Y. Wu, B. Nemesure, and A. Hennis, Arch. Ophthalmol. 120 (7), 954 (2002).

    Article  Google Scholar 

  24. M. C. Leske, S.-Y. Wu, A. Hennis, et al., Ophthalmology 115, 85 (2008).

    Article  Google Scholar 

  25. A. P. Cherecheanu, G. Garhofer, D. Schmidl, et al., Curr. Opin. Pharmacol. 13, 36 (2013).

    Article  Google Scholar 

  26. C. Gabriel, in Report N.AL/OE-TR-1996-0037 (Occupational and Environmental Health Directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas, USA, 1996).

  27. L. A. Katsnelson, Rheography of the Eye (Meditsina, Moscow, 1977) [in Russian].

    Google Scholar 

  28. J. C. Downs, M. D. Roberts, and C. F. Burgoyne, Optom Vis. Sci. 85 (6), 425 (2008).

    Article  Google Scholar 

  29. Ch. Chen, J. F. Reed, D. C. Rice, et al., J. Biomech. Eng. 115 (3), 231 (1993).

    Article  Google Scholar 

  30. G. A. Lyubimov, Glaukoma, No. 2, 64 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kovalchouk.

Additional information

Translated by A. Barkhash

Abbreviations: OPP, ocular perfusion pressure; AP, arterial pressure; IOP, intraocular pressure; ACA, anterior ciliary arteries; OODG, oculo-oscillo-dynamography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalchouk, A.G. Substantiation of a New Method for Diagnosing Ciliary Body Microcirculatory Ischemia by Determining a Decreased Level of Diastolic Perfusion Pressure in its Metarterioles. BIOPHYSICS 63, 644–654 (2018). https://doi.org/10.1134/S0006350918040115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040115

Navigation