Skip to main content
Log in

A soft X-ray synchrotron study of the charge state of iron ions in the ferrihydrite core of the ferritin Dps protein in Escherichia coli

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The Escherichia coli Dps protein belongs to a specific family of bacterial ferritins; it is a nanosized particle that contains an inorganic core (~5 nm in diameter) and a protein shell with a size of 8–9 nm. The protein shell consists of 12 identical subunits with the known crystal structure of a dodecamer. The composition and structure of the core have been less studied. The core formation is associated with the oxidation products of Fe2+ ions in the ferroxidase centers of the protein. Thus, Fe2O3 oxides are the main compounds of the core. However, the mineralization properties of Fe2+ ions under anaerobic conditions in vitro may indicate a more complicated composition of the core in the native Dps protein. This paper presents a technique for the preparation of purified Dps samples for ultrahigh vacuum synchrotron experiments by X-ray absorption near edge structure spectroscopy of the iron absorption edge in the soft X-ray region. The conducted synchrotron experiments have revealed the presence of both trivalent and divalent iron ions in the octahedral and tetrahedral environment of oxygen atoms in the prepared biological samples. This points to a complex ionic composition of the core even in the native Dps protein, which has been isolated from aerobically grown bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Zeth, Biochem. J. 445, 297 (2012).

    Article  Google Scholar 

  2. V. V. Nikandrov, Usp. Biol. Khim. 40, 357 (2000).

    Google Scholar 

  3. A. Miura, Y. Uraoka, T.Fuyuki, et al., J. Appl. Phys. 103, 074503 (2008).

    Article  ADS  Google Scholar 

  4. J. Hwang, C. Krebs, B. H. Huynh, et al., Science 287 (5450), 122 (2000).

    Article  ADS  Google Scholar 

  5. J. S. Rohrer, R. B. Frankel, G. C. Papaefthymiou, et al., Inorg. Chem. 28 (17), 3393 (1989).

    Article  Google Scholar 

  6. P. Mackle, J. M. Charnock, C. D. Garner et al., J. Am. Chem. Soc. 115 (18), 8471 (1993).

    Article  Google Scholar 

  7. M. A. Kostiainen, P. Hiekkataipale, A. Laiho, et al., Nature Nanotechnol. 8, 52 (2013).

    Article  ADS  Google Scholar 

  8. G. Zhao, P. Ceci, A. Ilari, L. Giangiacomo, et al., J. Biol. Chem. 277, 27689 (2002).

    Article  Google Scholar 

  9. T. J. Regan, H. Ohldag, C. Stamm, et al., Phys. Rev. B 64, 214422 (2001).

    Article  ADS  Google Scholar 

  10. E. P. Domashevskaya, S. A. Storozhilov, S. Yu. Turishchev, et al., J. Electron Spectrosc. Relat. Phenom. 156–158, 180 (2007).

    Article  Google Scholar 

  11. E. P. Domashevskaya, S. A. Storozhilov, S. Yu. Turishchev et al., Bull. Rus. Acad. Sci.: Physics 72 (4), 448 (2008).

    Google Scholar 

  12. E. P. Domashevskaya, A. V. Chernyshev, S. Yu. Turishchev, et al., Phys. Solid State 55 (6), 1294 (2013).

    Article  ADS  Google Scholar 

  13. A. Erbil, G. S. Cargill III, R. Frahm et al., Phys. Rev. B 37, 2450 (1988).

    Article  ADS  Google Scholar 

  14. M. Almirón, A. J. Link, D. Furlong, et al., Genes Dev. (6), 2646 (1992).

    Article  Google Scholar 

  15. V. O. Pokusaeva, S. S. Antipov, U. S. Shvyreva, et al., Sorbts. Khromatogr. Protsessy 6, 922 (2012).

    Google Scholar 

  16. P. Schuck, Biophys. J. 78, 1606 (2000).

    Article  ADS  Google Scholar 

  17. I. N. Serdyuk, N. R. Zaccai, and J. Zaccai, Methods in Molecular Biophysics: Structure, Dynamics, Function (Cambridge Univ. Press, Cambridge, U.K., 2007).

    Book  Google Scholar 

  18. A. A. Zamyatnin, Annu. Rev. Biophys. Bioeng. 13, 145 (1984).

    Article  Google Scholar 

  19. Malvern Instruments. http://www.malvern.com.

  20. V. V. Melekhov, U. S. Shvyreva, A. A. Timchenko, et al., PLOS ONE 10 (5), e01265041 (2015).

    Article  Google Scholar 

  21. Fine Chemicals for Research. http://www.alfa.com.

  22. P. Ceci, S. Cellai, E. Falvo, et al., Nucleic Acids Res. 32 (19), 5935 (2004).

    Article  Google Scholar 

  23. V. A. Terekhov, V. M. Kashkarov, E. Yu. Manukovskii, et al., J. Electron Spectrosc. Relat. Phenom. 114–116, 895 (2001).

    Article  Google Scholar 

  24. S. Yu. Turishchev, V. A. Terekhov, V. M. Kashkarov, et al., J. Electron Spectrosc. Relat. Phenom. 445–451, 156–158 (2007).

    Google Scholar 

  25. S. Yu. Turishchev, V. A. Terekhov, D. N. Nesterov, et al., Techn. Phys. Lett. 41 (4), 344 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Turishchev.

Additional information

Original Russian Text © S.Yu. Turishchev, S.S. Antipov, N.V. Novolokina, O.A. Chuvenkova, V.V. Melekhov, R. Ovsyannikov, B.V. Senkovskii, A.A. Timchenko, O.N. Ozoline, E.P. Domashevskaya, 2016, published in Biofizika, 2016, Vol. 61, No. 5, pp. 837–843.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turishchev, S.Y., Antipov, S.S., Novolokina, N.V. et al. A soft X-ray synchrotron study of the charge state of iron ions in the ferrihydrite core of the ferritin Dps protein in Escherichia coli . BIOPHYSICS 61, 705–710 (2016). https://doi.org/10.1134/S0006350916050286

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916050286

Keywords

Navigation