Skip to main content
Log in

Is the microtubule disruption-induced alteration of peroxide concentration a factor inhibiting the assembly of ribonucleoprotein stress granules?

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It has been examined whether the destruction of cell microtubules affects the increase in the intracellular hydrogen peroxide concentration caused by sodium arsenite, which induces the formation of stress ribonucleoprotein granules. As expected, sodium arsenite caused a 50% increase in hydrogen peroxide concentration in HeLa cells; on the other hand, another stress granule inducer tert-butylhydroquinone did not affect the peroxide concentration. The disruption of microtubules by nocodazole or vinblastine also resulted in some increase in the intracellular peroxide concentration, and the microtubule stabilization by taxol did not affect it. The combined treatment of cells with arsenite and antimicrotubule drugs caused an additive effect, and the peroxide concentration increased twice or more. Thus, the inhibition of stress granule formation after microtubule disruption cannot be explained by a decrease in peroxide concentration as compared with the affect of arsenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

tBHQ:

tert-butylhydroquinone

CM-DCF-DA:

5-(6)-chloromethyl-2′,7′-dichlorodihydrofluoescein diacetate

DMSO:

dimethylsulfoxide

PBS:

phosphate-buffered saline

RNP:

ribonucleoprotein

References

  1. P. A. Ivanov and E. M. Chudinova, Exp. Cell Res. 290, 227 (2003).

    Article  Google Scholar 

  2. E. S. Nadezhdina, A. J. Lomakin, A. A. Shpilman, et al., Biochim. Biophys. Acta 1803(3), 361 (2010).

    Article  Google Scholar 

  3. S. Kwon, Y. Zhang, and P. Matthias, Genes Dev. 21, 3381 (2007).

    Article  Google Scholar 

  4. E. Kolobova, A. Efimov, I. Kaverina, et al., Exp. Cell Res. 315, 542 (2009).

    Article  Google Scholar 

  5. K. G. Chernov, A. Barbet, L. Hamon, et al., J. Biol. Chem. 284, 36569 (2009).

    Article  Google Scholar 

  6. J. Kedzior, M. Masaoka, C. Kurono, et al., J. Electron Microsc. 53(6), 659 (2004).

    Article  Google Scholar 

  7. L. Zuo, M. Ushio-Fukai, L. L. Hilenski, et al., Arterioscler. Thromb. Vasc. Biol. 24(7), 1223 (2004).

    Article  Google Scholar 

  8. L. Pentassuglia, F. Timolati, F. Seifriz, et al., Exp. Cell Res. 313(8), 1588 (2007).

    Article  Google Scholar 

  9. J. Alexandre, Y. Hu, W. Lu, et al., Cancer Res. 67(8), 3512 (2007).

    Article  Google Scholar 

  10. R. Kahl, S. Weinke, and H. Kappus, Toxicol. 59(2), 179 (1989).

    Article  Google Scholar 

  11. C. P. LeBel, H. Ischiropoulos, and S. C. Bondy, Chem. Res. Toxicol. 5(2), 227 (1992).

    Article  Google Scholar 

  12. N. A. Shanina, P. A. Ivanov, E. M. Chudinova, et al., Mol. Biol. 5(4), 638 (2001).

    Google Scholar 

  13. R. Samarakoon, C. E. Higgins, P. Stephen, et al., Cell Signal. 21(6), 986 (2009).

    Article  Google Scholar 

  14. M. Ozaki, S. S. Deshpande, P. Angkeow, et al., J. Biol. Chem. 275(45), 35377 (2000).

    Article  Google Scholar 

  15. M. C. Duyndam, T. M. Hulscher, D. Fontijn, et al., J. Biol.Chem. 276(51), 48066 (2001).

    Google Scholar 

  16. D. K. Jung, G.-U. Bae, Y. K. Kim, et al., Exp. Cell Res. 290, 144 (2003).

    Article  Google Scholar 

  17. Y. C. Chen, S. Y. Lin-Shiau, and J. K. Lin, J. Cell Physiol. 177(2), 324 (1998).

    Article  Google Scholar 

  18. B. R. Imhoff and J. M. Hansen, Cell Biol. Toxicol. [Epub ahead of print] (2010).

  19. Y. Nakagawa, K. Nakajima, G. Moore, et al., Eur. J. Pharmacol. 270(4), 341 (1994).

    Google Scholar 

  20. T. Okubo, Y. Yokoyama, K. Kano, et al., Food Chem. Toxicol. 41(5), 679 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.M. Chudinova, E.S. Nadezhdina, P.A. Ivanov, 2010, published in Biofizika, 2010, Vol. 55, No. 5, pp. 857–861.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudinova, E.M., Nadezhdina, E.S. & Ivanov, P.A. Is the microtubule disruption-induced alteration of peroxide concentration a factor inhibiting the assembly of ribonucleoprotein stress granules?. BIOPHYSICS 55, 756–759 (2010). https://doi.org/10.1134/S000635091005012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091005012X

Keywords

Navigation