Skip to main content
Log in

Thermodynamic and structural characteristics of collagen fibrils formed in vitro at different temperatures and concentrations

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Analysis of the results of calorimetric study of reconstituted collagen (type I) fibrils, in particular, the half-width of the temperature transition, shows that the collagen packing density in the fibrils and the size of cooperative blocks therein depend on the assembly temperature and on the initial collagen concentration. The least dense fibrils are formed at subphysiological temperatures (25° or 30°C) and low concentration (0.3 mg/ml). The extent of ordering does not change upon doubling the concentration but increases upon quadrupling it. At physiological temperature (35°C) the fibrils are densely packed regardless of collagen concentration. The enthalpy of fibril assembly is minimal at 35°C, 1.2 mg/ml, and ionic strength of 0.17 M. The influence of temperature on particular steps of fibrillogenesis and the role of water in these processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. R. Williams, R. A. Gelman, D. C. Poppke, and K. A. Piez, J. Biol. Chem. 253, 6578 (1978).

    Google Scholar 

  2. M. E. Nimni and R. D. Harkness, in Collagen, Ed. by E. Nimni (CRC Press, Boca Raton, 1988), Vol. 1, pp. 1–77.

    Google Scholar 

  3. A. Veis and K. Payne, in Collagen, Ed. by E. Nimni (CRC Press, Boca Raton, 1988), Vol. 1, pp.113–137.

    Google Scholar 

  4. K. E. Kadler, D. F. Holmes, J. A. Trotter, and A. Chapman, Biochem. J. 316, 1 (1996).

    Google Scholar 

  5. D. L. Christiansen, E. K. Huang, and F. H. Silver, Matrix Biol. 19, 409 (2000).

    Article  Google Scholar 

  6. G. C. Wood and M. K. Keech, Biochem. J. 75, 588 (1960).

    Google Scholar 

  7. D. E. Birk and R. L. Trelstad, N.-Y. Acad. Sci. 460, 258 (1985).

    Article  Google Scholar 

  8. D. F. Holmes, M. J. Capaldi, and J. A. Chapman, Int. J. Biol. Macromol. 8, 161 (1986).

    Article  Google Scholar 

  9. N. G. Esipova and T. Yu. Shchegoleva, Biofizika, 35, 827 (1990).

    Google Scholar 

  10. A.V. Persikov and B. Brodsky, Proc. Natl. Acad. Sci. USA 99, 1101 (2002).

    Article  ADS  Google Scholar 

  11. E. Leikina, M. V. Mertts, N. Kuznetsova, and S. Leikin, Proc. Natl. Acad. Sci. USA 99, 1314 (2002).

    Article  ADS  Google Scholar 

  12. E. J. Kucharz, The collagen: biochemistry and pathphysiology (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  13. E. J. Miller, in Collagen, Ed. by E. Nimni (CRC Press, Boca Raton, 1988), Vol. 1, pp. 139–156.

    Google Scholar 

  14. D. G. Wallace, Biopolymers 24, 1705 (1985).

    Article  Google Scholar 

  15. T. I. Nikolaeva, A. I. Pisachenko, R. V. Polozov, Yu. A. Rochev, and B. K. Gavrilyuk, Biofizika, 46, 612 (2001).

    Google Scholar 

  16. R. Lumry, R. L. Biltonen, and J. F. Brandts, Biopolymers 4, 917 (1966).

    Article  Google Scholar 

  17. P. L. Privalov, I. N. Serdyuk, and E. I. Tiktopulo, Biopolymers 10, 1777 (1971).

    Article  Google Scholar 

  18. J. Engel, Arch. Biochem. Biophys. 97, 150 (1962).

    Article  Google Scholar 

  19. P. L. Privalov, Prot. Chem. 35, 1 (1982).

    Article  Google Scholar 

  20. E. I. Tiktopulo and A. V. Kajava, Biochemistry 37, 8147 (1998).

    Article  Google Scholar 

  21. J. T. Edsall and H. Gutfreund, Biothermodynamics (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  22. C. A. Miles, T. V. Burjanadze, and A. J. Bailey, J. Mol. Biol. 245, 437 (1995).

    Article  Google Scholar 

  23. N. G. Esipova, M. V. Grigolava, T. Yu. Shchegoleva, V. N. Rogulenkova, and V. Ya. Maleev, Biofizika, 26, 355 (1981).

    Google Scholar 

  24. K. E. Kadler and D. J. Prockop, Nature 325, 395 (1987).

    Article  ADS  Google Scholar 

  25. A. George and A. Veis, Biochemistry 30, 2372 (1991).

    Article  Google Scholar 

  26. P. L. Privalov, E. I. Tiktopulo, and V. M. Tischenko, J. Mol. Biol. 127, 203 (1979).

    Article  Google Scholar 

  27. A. Veis and A. George, in Extracellular matrix assembly and structure, Ed. by Yurchenco et al. (Acad. Press, N.-Y., 1994), pp. 15–45.

    Google Scholar 

  28. A. J. Bailey, Compr. Biochem. 26B, 297 (1968).

    Google Scholar 

  29. V. Ya. Aleksandrov, Cells, Macromolecules, and Temperature (Nauka, Leningrad, 1975) [in Russian].

    Google Scholar 

  30. P. L. Provalov and G. M. Mrevlishvili, Biofizika, 12, 22 (1967).

    Google Scholar 

  31. N. G. Esipova, N. S. Andreeva, and T. V. Gatovskaya, Biofizika, 3, 529 (1958).

    Google Scholar 

  32. V. G. Tumanyan, V. N. Rogulenkova, N. G. Esipova, and F. Eisenhaber, Biofizika, 37, 5 (1992).

    Google Scholar 

  33. Yu. V. Mil’chevskii, B. S. Zhorov, N. G. Esipova, and V. G. Tumanyan, Bioorg. Khim. 25, 348 (1999).

    Google Scholar 

  34. T. V. Burdjanadze and E. I. Tiktopulo, Biofizika, 46, 607 (2001).

    Google Scholar 

  35. J. Bella, B. Brodsky, and H. M. Berman, Curr. Biol. 3, 893 (1995).

    Google Scholar 

  36. B. Brodsky and J. A. M. Ramshaw, Matrix Biol. 15, 545 (1997).

    Article  Google Scholar 

  37. G. Melacini, A. M. J. J. Bonvin, M. Goodman, et al., J. Mol. Biol. 300, 1041 (2000).

    Article  Google Scholar 

  38. C. A. Hoeve and A. S. Tata, J. Phys. Chem. 82, 1660 (1978).

    Article  Google Scholar 

  39. S. Cusack and S. Less, Biopolymers 23, 337 (1984).

    Article  Google Scholar 

  40. I. Mersopyan, T. V. Burdjanadze, Sh. G. Barbakadze, N. G. Esipova, and D. R. Monaselidze, Biofizika, 51, 151 (2006).

    Google Scholar 

  41. S. Leikin and V. A. Parsegian, Proteins 19, 73 (1994).

    Article  Google Scholar 

  42. S. Leikin, D. C. Rau, and V. A. Parsegian, Nat. Struct. Biol. 2, 205 (1995).

    Article  Google Scholar 

  43. A. V. Kajava, J. Mol. Biol. 218, 815 (1991).

    Article  Google Scholar 

  44. J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, Science 266, 75 (1995).

    Article  ADS  Google Scholar 

  45. B. K. Gavrilyuk, Yu. A. Rochev, and T. I. Nikolaeva, Cell Culture and Tissue Reconstruction (Skin) (ONTI NTsBI, Pushchino, 1988) [in Russian].

    Google Scholar 

  46. K. Poole, K. Khairy, J. Friedrichs, et al., J. Mol. Biol. 349, 380 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.I. Nikolaeva, E.I. Tiktopulo, R.V. Polozov, Yu.A. Rochev, 2007, published in Biofizika, 2007, Vol. 52, No. 2, pp. 261–267.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaeva, T.I., Tiktopulo, E.I., Polozov, R.V. et al. Thermodynamic and structural characteristics of collagen fibrils formed in vitro at different temperatures and concentrations. BIOPHYSICS 52, 191–195 (2007). https://doi.org/10.1134/S000635090702008X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635090702008X

Key words

Navigation