Skip to main content
Log in

Structure of Escherichia coli uracil-DNA glycosylase and its complexes with nonhydrolyzable substrate analogues in solution studied by synchrotron small-angle X-ray scattering

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The structure of native and modified uracil-DNA glycosylase from E. coli in solution was studied by synchrotron small-angle X-ray scattering. The modified enzyme (6His-uracil glycosylase) differs from the native one by the presence of an additional N-terminal 11-meric sequence of amino acid residues, including a block of six His residues. In contrast to minimal differences in the amino acid sequences and functional activity, conformations of native and 6His-uracil glycosylases in solution were found to differ substantially at moderate ionic strength (60 mM NaCl). The structure of uracil-DNA glycosylase in solution is close to that in crystal and shows a tendency toward association. The interaction of this enzyme with nonhydrolyzable analogues of DNA ligands causes partial dissociation of associates and compaction of protein structure. At the same time, 6His-uracil DNA glycosylase has a compact structure, intrinsically different from that in crystals. A decrease in the ionic strength of solution results in a partial destruction of the compact structure of the modified protein, keeping its functional activity unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UDH:

uracil-DNA glycosylase

6His-UDH:

modified UDH

6SSAXS:

synchrotron small angle diffuse X-ray scattering

XRDA:

X-ray diffraction analysis

nU:

2′-amino-2′-deoxyuridine

PDB:

Protein Data Bank

References

  1. B. Lewin, Genes II (Wiley, New York, 1985; Mir, Moscow, 1987), pp. 38–42, 436–440.

    Google Scholar 

  2. J. P. Leblanc, B. Martin, J. Cadet, and J. Laval, J. Biol. Chem. 257(7), 3477 (1982).

    Google Scholar 

  3. M. Talpaert-Borle, F. Campagnari, and D. M. Creissen, J. Biol. Chem. 257(3), 1208 (1982).

    Google Scholar 

  4. P. Blaisdell and H. Warner, J. Biol. Chem. 258(3), 1603 (1983).

    Google Scholar 

  5. N. L. Vasilenko and G. A. Nevinskii, Biokhimiya (Moscow) 68(2), 165 (2003).

    Google Scholar 

  6. R. Ravishankar, M. Bidya Sagar, S. Roy, et al., Nucleic Acids Res. 26(21), 4880 (1998).

    Article  Google Scholar 

  7. G. Slupphaug, C. D. Mol, B. Kavli, et al., Nature 384, 87 (1996).

    Article  ADS  Google Scholar 

  8. R. Savva, K. McAuley-Hecht, T. Brown, and L. Pearl, Nature 373, 487 (1995).

    Article  ADS  Google Scholar 

  9. C. D. Putnam, M. J. Shroyer, A. J. Lundquist, et al., J. Mol. Biol. 287(2), 331 (1999).

    Article  Google Scholar 

  10. C. D. Mol, A. S. Arvai, G. Slupphaug, et al., Cell 80(6), 869 (1995).

    Article  Google Scholar 

  11. S. S. Parikh, C. D. Mol, G. Slupphaug, et al., EMBO J. 17(17), 5214 (1998).

    Article  Google Scholar 

  12. K. Saikrishnan, M. Bidya Sagur, R. Ravishankar, et al., Acta Crystallogr. D. Biol. Crystallogr. 58, 1269 (2002).

    Article  Google Scholar 

  13. O. Glatter and O. Kratky, Small Angle X-ray Scattering (Academic, London, 1982), pp. 1–515.

    Google Scholar 

  14. M. Yu. Pavlov and B. A. Fedorov, Biopolymers 22, 1507 (1983).

    Article  Google Scholar 

  15. A. A. Timchenko, B. S. Melnik, H. Kihara, et al., FEBS Lett. 471, 211 (2000).

    Article  Google Scholar 

  16. N. Luo, E. Mehler, and R. Osman, Biochemistry 38(29), 9209 (1999).

    Article  Google Scholar 

  17. G. Xiao, M. Tordova, J. Jagadeesh, et al., Proteins 35(1), 13 (1999).

    Article  Google Scholar 

  18. M. A. Bianchet, L. A. Seiple, Y. L. Jiang, et al., Biochemistry 42(43), 12455 (2003).

    Article  Google Scholar 

  19. E. A. Kubareva, N. L. Vasilenko, O. V. Vorobjeva, et al., Biochem. Mol. Biol. Int. 46(3), 597 (1998).

    Google Scholar 

  20. G. Slupphaung, I. Eftedal, B. Kavli, et al., Biochemistry 34(1), 128 (1995).

    Article  Google Scholar 

  21. P. A. Belavin, N. A. Netesova, S. S. Reshetknikov, et al., Biotekhnol., No. 3, 3 (1997).

  22. A. E. Sud’ina, E. M. Volkov, T. S. Oretskaya, et al., Bioorg. Khim. 26(6), 442 (2000).

    Google Scholar 

  23. L. G. Kuznetsova, E. M. Volkov, E. A. Romanova, et al., Bioorgan. Khimiya 17(9), 1289 (1991).

    Google Scholar 

  24. S. A. Narang, R. Brousseau, H. M. Hsiung, and J. J. Michniewiez, Methods Enzymol. (Academic, New York, 1980), Vol. 65, p. 610.

    Google Scholar 

  25. A. A. Zamyatnin, Annu. Rev. Biophys. Bioeng. 13, 145 (1984).

    Article  Google Scholar 

  26. Y. Amemiya, K. Wakabayashi, T. Hamanaka, et al., Nucl. Instr. Methods 208, 471 (1983).

    Article  Google Scholar 

  27. A. V. Semenyuk and D. I. Svergun, J. Appl. Crystallogr. 24, 537 (1991).

    Article  Google Scholar 

  28. H. Aurup, D. M. Williams, and F. Eckstein, Biochemistry 31(40), 9636 (1992).

    Article  Google Scholar 

  29. N. L. Vasilenko and G. A. Nevinskii, Biokhimiya (Moscow) 68(2), 165 (2003).

    Google Scholar 

  30. J. T. Stivers and Y. L. Jiang, Chem. Rev. 103(7), 2729 (2003).

    Article  Google Scholar 

  31. E. A. Kubureva, E. M. Volkov, N. L. Vinogradova, et al., Gene 157(1–2), 167 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Timchenko, E.A. Kubareva, E.M. Volkov, O.L. Voronina, V.G. Lunin, D.A. Gonchar, S.Kh. Degtyarev, M.A. Timchenko, H. Kihara, K. Kimura, 2006, published in Biofizika, 2006, Vol. 51, No. 1, pp. 5–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timchenko, A.A., Kubareva, E.A., Volkov, E.M. et al. Structure of Escherichia coli uracil-DNA glycosylase and its complexes with nonhydrolyzable substrate analogues in solution studied by synchrotron small-angle X-ray scattering. BIOPHYSICS 51, 1–7 (2006). https://doi.org/10.1134/S0006350906010015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350906010015

Key words

Navigation