Skip to main content
Log in

Pathogenetic Significance of Long Non-Coding RNAs in the Development of Thoracic and Abdominal Aortic Aneurysms

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Aortic aneurysm (AA) is a life-threatening condition with a high prevalence and risk of severe complications. The aim of this review was to summarize the data on the role of long non-coding RNAs (lncRNAs) in the development of AAs of various location. Within less than a decade of studies on the role of lncRNAs in AA, using experimental and bioinformatic approaches, scientists have obtained the data confirming the involvement of these molecules in metabolic pathways and pathogenetic mechanisms critical for the aneurysm development. Regardless of the location of pathological process (thoracic or abdominal aorta), AA was found to be associated with changes in the expression of various lncRNAs in the tissue of the affected vessels. The consistency of changes in the expression level of lncRNA, mRNA and microRNA in aortic tissues during AA development has been recordedand regulatory networks implicated in the AA pathogenesis in which lncRNAs act as competing endogenous RNAs (ceRNA networks) have been identified. It was found that the same lncRNA can be involved in different ceRNA networks and regulate different biochemical and cellular events; on the other hand, the same pathological process can be controlled by different lncRNAs. Despite some similarities in pathogenesis and overlapping of involved lncRNAs, the ceRNA networks described for abdominal and thoracic AA are different. Interactions between lncRNAs and other molecules, including those participating in epigenetic processes, have also been identified as potentially relevant to the AA pathogenesis. The expression levels of some lncRNAs were found to correlate with clinically significant aortic features and biochemical parameters. Identification of regulatory RNAs functionally significant in the aneurysm development is important for clarification of disease pathogenesis and will provide a basis for early diagnostics and development of new preventive and therapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AA:

aortic aneurysm

AAA:

abdominal aortic aneurysm

circRNA:

circular RNA

ECM:

extracellular matrix

lncRNA:

long non-coding RNA

SMC:

smooth muscle cell

TAA:

thoracic aortic aneurysm

TAAA:

thoracoabdominal aortic aneurysm

TAD:

thoracic aorta dissection

VSMC:

vascular smooth muscle cell

References

  1. Clouse, W. D., Hallett, J. W. Jr., Schaff, H. V., Gayari, M. M., Ilstrup, D. M., and Melton, L. J. 3rd (1998) Improved prognosis of thoracic aortic aneurysms: a population-based study, JAMA, 280, 1926-1929, https://doi.org/10.1001/jama.280.22.1926.

    Article  CAS  PubMed  Google Scholar 

  2. Gillum, R. F. (1995) Epidemiology of aortic aneurysm in the United States, J. Clin. Epidemiol., 48, 1289-1298, https://doi.org/10.1016/0895-4356(95)00045-3.

    Article  CAS  PubMed  Google Scholar 

  3. Isselbacher, E. M., Preventza, O., Hamilton Black, J., 3rd, Augoustides, J. G., Beck, A. W., et al. (2022) 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: a report of the american heart association/american college of cardiology joint committee on clinical practice guidelines, Circulation, 146, e334-e482, https://doi.org/10.1161/CIR.0000000000001106.

    Article  PubMed  Google Scholar 

  4. Golledge, J., Krishna, S. M., and Wang, Y. (2022) Mouse models for abdominal aortic aneurysm, Br. J. Pharmacol., 179, 792-810, https://doi.org/10.1111/bph.15260.

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y., and Maegdefessel, L. (2017) Non-coding RNA contribution to thoracic and abdominal aortic aneurysm disease development and progression, Front. Physiol., 8, 429, https://doi.org/10.3389/fphys.2017.00429.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paltseva, E. M. (2015) Aortic aneurysms: etiology and pathomorphology [in Russian], Mol. Med., 4, 3-10.

    Google Scholar 

  7. Quintana, R. A., and Taylor, W. R. (2019) Cellular mechanisms of aortic aneurysm formation, Circ. Res., 124, 607-618, https://doi.org/10.1161/CIRCRESAHA.118.313187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bararu Bojan Bararu, I., Pleșoianu, C. E., Badulescu, O. V., Vladeanu, M. C., Badescu, M. C., et al. (2023) Molecular and cellular mechanisms involved in aortic wall aneurysm development, Diagnostics (Basel), 13, 253, https://doi.org/10.3390/diagnostics13020253.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, L., Issa Bhaloo, S., Chen, T., Zhou, B., and Xu, Q. (2018) Role of resident stem cells in vessel formation and arteriosclerosis, Circ. Res., 122, 1608-1624, https://doi.org/10.1161/CIRCRESAHA.118.313058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D’Amico, F., Doldo, E., Pisano, C., Scioli, M. G., Centofanti, F., et al. (2020) Specific miRNA and gene deregulation characterize the increased angiogenic remodeling of thoracic aneurysmatic aortopathy in marfan syndrome, Int. J. Mol. Sci., 21, 6886, https://doi.org/10.3390/ijms21186886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lionakis, N., Briasoulis, A., Zouganeli, V., Koutoulakis, E., Kalpakos, D., et al. (2023) Coronary artery aneurysms: comprehensive review and a case report of a left main coronary artery aneurysm, Curr. Probl. Cardiol., 48, 101700, https://doi.org/10.1016/j.cpcardiol.2023.101700.

    Article  PubMed  Google Scholar 

  12. Monda, E., Lioncino, M., Verrillo, F., Rubino, M., Caiazza, M., et al. (2023) The Role of Genetic testing in patients with heritable thoracic aortic diseases, Diagnostics (Basel), 13, 772, https://doi.org/10.3390/diagnostics13040772.

    Article  CAS  PubMed  Google Scholar 

  13. Biddinger, A., Rocklin, M., Coselli, J., and Milewicz, D. M. (1997) Familial thoracic aortic dilatations and dissections: a case control study, J. Vasc. Surg., 25, 506-511, https://doi.org/10.1016/s0741-5214(97)70261-1.

    Article  CAS  PubMed  Google Scholar 

  14. Coady, M. A., Davies, R. R., Roberts, M., Goldstein, L. J., Rogalski, M. J., et al. (1999) Familial patterns of thoracic aortic aneurysms, Arch. Surg., 134, 361-367, https://doi.org/10.1001/archsurg.134.4.361.

    Article  CAS  PubMed  Google Scholar 

  15. Albornoz, G., Coady, M. A., Roberts, M., Davies, R. R., Tranquilli, M., et al. (2006) Familial thoracic aortic aneurysms and dissections-incidence, modes of inheritance, and phenotypic patterns, Ann. Thorac. Surg., 82, 1400-1405, https://doi.org/10.1016/j.athoracsur.2006.04.098.

    Article  PubMed  Google Scholar 

  16. Pyeritz, R. E. (2014) Heritable thoracic aortic disorders, Curr. Opin. Cardiol., 29, 97-102, https://doi.org/10.1097/HCO.0000000000000023.

    Article  PubMed  Google Scholar 

  17. Duarte, V. E., Yousefzai, R., and Singh, M. N. (2023) Genetically triggered thoracic aortic disease: who should be tested? Methodist DeBakey Cardiovasc J., 19, 24-28, https://doi.org/10.14797/mdcvj.1218.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krywanczyk, A., Rodriguez, E. R., Tan, C. D., and Gilson, T. (2023) Thoracic aortic aneurysm and dissection: review and recommendations for evaluation, Am. J. Forensic Med. Pathol., 44, 69-76, https://doi.org/10.1097/PAF.0000000000000819.

    Article  PubMed  Google Scholar 

  19. Mangum, K. D., and Farber, M. A. (2020) Genetic and epigenetic regulation of abdominal aortic aneurysms, Clin. Genet., 97, 815-826, https://doi.org/10.1111/cge.13705.

    Article  CAS  PubMed  Google Scholar 

  20. Gouveia E Melo, R., Silva Duarte, G., Lopes, A., Alves, M., Caldeira, D., et al. (2022) Incidence and prevalence of thoracic aortic aneurysms: a systematic review and meta-analysis of population-based studies, Semin. Thorac. Cardiovasc Surg., 34, 1-16, https://doi.org/10.1053/j.semtcvs.2021.02.029.

    Article  PubMed  Google Scholar 

  21. Kim, H. W., and Stansfield, B. K. (2017) Genetic and epigenetic regulation of aortic aneurysms, Biomed. Res. Int., 2017, 7268521, https://doi.org/10.1155/2017/7268521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gouveia E Melo, R., Silva Duarte, G., Lopes, A., Alves, M., Caldeira, D., et al. (2020) Synchronous and metachronous thoracic aortic aneurysms in patients with abdominal aortic aneurysms: a systematic review and meta-analysis, J. Am. Heart Assoc., 9, e017468, https://doi.org/10.1161/JAHA.120.017468.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van de Pol, V., Kurakula, K., DeRuiter, M. C., and Goumans, M. J. (2017) Thoracic aortic aneurysm development in patients with bicuspid aortic valve: what is the role of endothelial cells? Front. Physiol., 8, 938, https://doi.org/10.3389/fphys.2017.00938.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rombouts, K. B., van Merrienboer, T. A. R., Ket, J. C. F., Bogunovic, N., van der Velden, J., and Yeung, K. K. (2022) The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections, Eur. J. Clin. Invest., 52, e13697, https://doi.org/10.1111/eci.13697.

    Article  CAS  PubMed  Google Scholar 

  25. Qian, G., Adeyanju, O., Olajuyin, A., and Guo, X. (2022) Abdominal aortic aneurysm formation with a focus on vascular smooth muscle cells, Life (Basel), 12, 191, https://doi.org/10.3390/life12020191.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Senser, E. M., Misra, S., and Henkin, S. (2021) Thoracic aortic aneurysm: a clinical review, Cardiol. Clin., 39, 505-515, https://doi.org/10.1016/j.ccl.2021.06.003.

    Article  PubMed  Google Scholar 

  27. Haque, K., and Bhargava, P. (2022) Abdominal aortic aneurysm, Am. Fam. Physician, 106, 165-172.

    PubMed  Google Scholar 

  28. Wolford, B. N., Hornsby, W. E., Guo, D., Zhou, W., Lin, M., et al. (2019) Clinical implications of identifying pathogenic variants in individuals with thoracic aortic dissection, Circ. Genom. Precis. Med., 12, e002476, https://doi.org/10.1161/CIRCGEN.118.002476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iyer, V., Rowbotham, S., Biros, E., Bingley, J., and Golledge, J. (2017) A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms, Atherosclerosis, 261, 78-89, https://doi.org/10.1016/j.atherosclerosis.2017.03.010.

    Article  CAS  PubMed  Google Scholar 

  30. Spin, J. M., Li, D. Y., Maegdefessel, L., Tsao, P. S. (2019) Non-coding RNAs in aneurysmal aortopathy, Vascul. Pharmacol., 114, 110-121, https://doi.org/10.1016/j.vph.2018.06.008.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao, J. (2020) Non-Coding RNAs in Cardiovascular Diseases, Springer Nature Singapore Pte Ltd., Springer Singapore, https://doi.org/10.1007/978-981-15-1671-9.

  32. Han, Y., Zhang, H., Bian, C., Chen, C., Tu, S., et al. (2021) Circular RNA expression: its potential regulation and function in abdominal aortic aneurysms, Oxid. Med. Cell. Longev., 2021, 9934951, https://doi.org/10.1155/2021/9934951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schellinger, I. N., Dannert, A. R., Mattern, K., Raaz, U., and Tsao, P. S. (2021) Unresolved issues in RNA therapeutics in vascular diseases with a focus on aneurysm disease, Front. Cardiovasc. Med., 8, 571076, https://doi.org/10.3389/fcvm.2021.571076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kucher, A. N., and Nazarenko, M. S. (2023) Regulatory potential of non-coding RNAs colocalized with cardiomyopathy-related genes, Russ. J. Genet., 59, 325-343, https://doi.org/10.1134/S1022795423040051.

    Article  CAS  Google Scholar 

  35. Kawaguchi, S., Moukette, B., Hayasaka, T., Haskell, A. K., Mah, J., et al. (2023) Noncoding RNAs as key regulators for cardiac development and cardiovascular diseases, J. Cardiovasc. Dev. Dis., 10, 166, https://doi.org/10.3390/jcdd10040166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, Y., Yang, S., and Xue, G. (2023) The role of long non-coding RNA in abdominal aortic aneurysm, Front. Genet., 14, 1153899, https://doi.org/10.3389/fgene.2023.1153899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hombach, S., and Kretz, M. (2016) Non-coding RNAs: classification, biology and functioning, Adv. Exp. Med. Biol., 937, 3-17, https://doi.org/10.1007/978-3-319-42059-2_1.

    Article  CAS  PubMed  Google Scholar 

  38. Fang, S., Zhang, L., Guo, J., Niu, Y., Wu, Y., et al. (2018) NONCODEV5: a comprehensive annotation database for long non-coding RNAs, Nucleic Acids Res., 46, D308-D314, https://doi.org/10.1093/nar/gkx1107.

    Article  CAS  PubMed  Google Scholar 

  39. Frankish, A., Diekhans, M., Ferreira, A. M., Johnson, R., Jungreis, I., et al. (2019) GENCODE reference annotation for the human and mouse genomes, Nucleic Acids Res., 47, D766-D773, https://doi.org/10.1093/nar/gky955.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., et al. (2013) Circular intronic long noncoding RNAs, Mol. Cell, 51, 792-806, https://doi.org/10.1016/j.molcel.2013.08.017.

    Article  CAS  PubMed  Google Scholar 

  41. Mattick, J. S., Amaral, P. P., Carninci, P., Carpenter, S., Chang, H. Y., et al. (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations, Nat. Rev. Mol. Cell. Biol., 24, 430-447, https://doi.org/10.1038/s41580-022-00566-8.

    Article  CAS  PubMed  Google Scholar 

  42. Jarroux, J., Morillon, A., and Pinskaya, M. (2017) History, discovery, and classification of lncRNAs, Adv. Exp. Med. Biol., 1008, 1-46, https://doi.org/10.1007/978-981-10-5203-3_1.

    Article  CAS  PubMed  Google Scholar 

  43. Guo, Q., Wang, J., Sun, R., Gu, W., He, Z., et al. (2020) Identification of circulating hub long noncoding RNAs associated with hypertrophic cardiomyopathy using weighted correlation network analysis, Mol. Med. Rep., 22, 4637-4644, https://doi.org/10.3892/mmr.2020.11566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo, Q., Wang, J., Sun, R., He, Z., Chen, Q., et al. (2020) Comprehensive construction of a circular RNA-associated competing endogenous RNA network identified novel circular RNAs in hypertrophic cardiomyopathy by integrated analysis, Front. Genet., 11, 764, https://doi.org/10.3389/fgene.2020.00764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh, D. D., Kim, Y., Choi, S. A., Han, I., and Yadav, D. K. (2023) Clinical significance of microRNAs, long non-coding RNAs, and CircRNAs in cardiovascular diseases, Cells, 12, 1629, https://doi.org/10.3390/cells12121629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun, J., Chen, G., Jing, Y., He, X., Dong, J., et al. (2018) LncRNA expression profile of human thoracic aortic dissection by high-throughput sequencing, Cell. Physiol. Biochem., 46, 1027-1041, https://doi.org/10.1159/000488834.

    Article  CAS  PubMed  Google Scholar 

  47. Ao, X., Ding, W., Li, X., Xu, Q., Chen, X., et al. (2023) Non-coding RNAs regulating mitochondrial function in cardiovascular diseases, J. Mol. Med. (Berl.), 101, 501-526, https://doi.org/10.1007/s00109-023-02305-8.

    Article  PubMed  Google Scholar 

  48. Wołowiec, Ł., Mędlewska, M., Osiak, J., Wołowiec, A., Grześk, E., et al. (2023) MicroRNA and lncRNA as the future of pulmonary arterial hypertension treatment, Int. J. Mol. Sci., 24, 9735, https://doi.org/10.3390/ijms24119735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duggirala, A., Delogu, F., Angelini, T. G., Smith, T., Caputo, M., et al. (2015) Non coding RNAs in aortic aneurysmal disease, Front. Genet., 6, 125, https://doi.org/10.3389/fgene.2015.00125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, G. J., Yang, Q. H., Yang, G. K., Yang, G., Hou, Y., et al. (2023) MiR-125b and SATB1-AS1 might be shear stress-mediated therapeutic targets, Gene, 857, 147181, https://doi.org/10.1016/j.gene.2023.147181.

    Article  CAS  PubMed  Google Scholar 

  51. Li, Y., Liu, Y., Liu, S., Wu, F., Li, S., et al. (2018) Differential expression profile of long non-coding RNAs in human thoracic aortic aneurysm, J. Cell. Biochem., 119, 7991-7997, https://doi.org/10.1002/jcb.26670.

    Article  CAS  PubMed  Google Scholar 

  52. Guo, X., Chang, Q., Pei, H., Sun, X., Qian, X., et al. (2017) Long non-coding RNA-mRNA correlation analysis reveals the potential role of HOTAIR in pathogenesis of sporadic thoracic aortic aneurysm, Eur. J. Vasc. Endovasc. Surg., 54, 303-314, https://doi.org/10.1016/j.ejvs.2017.06.010.

    Article  CAS  PubMed  Google Scholar 

  53. Yang, Y. G., Li, M. X., Kou, L., Zhou, Y., Qin, Y. W., et al. (2016) Long noncoding RNA expression signatures of abdominal aortic aneurysm revealed by microarray, Biomed. Environ. Sci., 29, 713-723, https://doi.org/10.3967/bes2016.096.

    Article  CAS  PubMed  Google Scholar 

  54. Tian, L., Hu, X., He, Y., Wu, Z., Li, D., and Zhang, H. (2018) Construction of lncRNA-miRNA-mRNA networks reveals functional lncRNAs in abdominal aortic aneurysm, Exp. Ther. Med., 16, 3978-3986, https://doi.org/10.3892/etm.2018.6690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, Y., and Yang, N. (2018) Microarray expression profile analysis of long non-coding RNAs in thoracic aortic aneurysm, Kaohsiung J. Med. Sci., 34, 34-42, https://doi.org/10.1016/j.kjms.2017.09.005.

    Article  CAS  PubMed  Google Scholar 

  56. Maitiseyiti, A., Ci, H., Fang, Q., Guan, S., Shawuti, A., et al. (2020) Identification of novel long noncoding RNAs and their role in abdominal aortic aneurysm, BioMed Res. Int., 2020, 3502518, https://doi.org/10.1155/2020/3502518.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang, S., Yuan, Q., Zhao, W., and Zhou, W. (2021) Circular RNA RBM33 contributes to extracellular matrix degradation via miR-4268/EPHB2 axis in abdominal aortic aneurysm, PeerJ, 16, e12232, https://doi.org/10.7717/peerj.12232.

    Article  CAS  Google Scholar 

  58. Wang, J., Sun, H., Zhou, Y., Huang, K., Que, J., et al. (2019) Circular RNA microarray expression profile in 3,4-benzopyrene/angiotensin II-induced abdominal aortic aneurysm in mice, J. Cell. Biochem., 120, 10484-10494, https://doi.org/10.1002/jcb.28333.

    Article  CAS  PubMed  Google Scholar 

  59. Si, K., Lu, D., and Tian, J. (2021) Integrated analysis and the identification of a circRNA-miRNA-mRNA network in the progression of abdominal aortic aneurysm, PeerJ, 9, e12682, https://doi.org/10.7717/peerj.12682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, H., Bian, C., Tu, S., Yin, F., Guo, P., et al. (2021) Construction of the circRNA-miRNA-mRNA regulatory network of an abdominal aortic aneurysm to explore its potential pathogenesis, Dis. Markers, 2021, 9916881, https://doi.org/10.1155/2021/9916881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, L., Wang, S., Wang, Z., Liu, Y., Xu, Y., et al. (2022) Construction and analysis of competing endogenous RNA network and patterns of immune infiltration in abdominal aortic aneurysm, Front. Cardiovasc. Med., 9, 955838, https://doi.org/10.3389/fcvm.2022.955838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, T., Wang, T., Yan, L., and Ma, C. (2021) Identification of potential novel biomarkers for abdominal aortic aneurysm based on comprehensive analysis of circRNA-miRNA-mRNA networks, Exp. Ther. Med., 22, 1468, https://doi.org/10.3892/etm.2021.10903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patamsytė, V., Žukovas, G., Gečys, D., Žaliaduonytė, D., Jakuška, P., et al. (2020) Long noncoding RNAs CARMN, LUCAT1, SMILR, and MALAT1 in thoracic aortic aneurysm: validation of biomarkers in clinical samples, Dis. Markers, 2020, 8521899, https://doi.org/10.1155/2020/8521899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou, F., Zheng, Z., Zha, Z., Xiong, T., and Pan, Y. (2022) Nuclear paraspeckle assembly transcript 1 enhances hydrogen peroxide-induced human vascular smooth muscle cell Injury by regulating miR-30d-5p/A disintegrin and metalloprotease 10, Circ. J., 86, 1007-1018, https://doi.org/10.1253/circj.CJ-21-0042.

    Article  CAS  PubMed  Google Scholar 

  65. He, Q., Tan, J., Yu, B., Shi, W., and Liang, K. (2015) Long noncoding RNA HIF1A-AS1A reduces apoptosis of vascular smooth muscle cells: implications for the pathogenesis of thoracoabdominal aorta aneurysm, Pharmazie, 70, 310-315.

    CAS  PubMed  Google Scholar 

  66. Nie, H., Zhao, W., Wang, S., and Zhou, W. (2021) Based on bioinformatics analysis lncrna SNHG5 modulates the function of vascular smooth muscle cells through mir-205-5p/SMAD4 in abdominal aortic aneurysm, Immun. Inflamm. Dis., 9, 1306-1320, https://doi.org/10.1002/iid3.478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Abugov, S. A., Averina, T. B., Akchurin, R. S., Alekyan, B. G., Arakelyan, V. S., Vachev, A. N., Gordeev, M. L., Dzhordzhikiya, R. K., Dyuzhikov, A. A., Eroshkin, I. A., Imaev, T. E., Kavteladze, Z. A., Kovalev, S. A., Mironenko, V. A., Muratov, R. M., Pokrovsky, A. V., Rybka, M. M., Sokolov, V. V., Troitsky, A. V., Fokin, A. A., Chazova, I. E., Charchyan, E. R., Chernov, I. I., Chernyavsky, A. M., Chupin, A. V., Shatalov, K. V., Shipovsky, V. N., Shlyakhto, E. V., and Shneider, Yu. A. (2018) Clinical guidelines. Guidelines for the diagnosis and treatment of aortic diseases, Russ. J. Cardiol. Cardiovasc. Surg., 11, 7-67.

    Google Scholar 

  68. UniProt Consortium (2023) UniProt: the Universal Protein Knowledgebase in 2023, Nucleic Acids Res., 51, D523-D531, https://doi.org/10.1093/nar/gkac1052.

    Article  CAS  Google Scholar 

  69. Winter, H., Winski, G., Busch, A., Chernogubova, E., Fasolo, F., et al. (2023) Targeting long non-coding RNA NUDT6 enhances smooth muscle cell survival and limits vascular disease progression, Mol. Ther., 31, 1775-1790, https://doi.org/10.1016/j.ymthe.2023.04.020.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao, Y., Feng, G., Wang, Y., Yue, Y., and Zhao, W. (2014) Regulation of apoptosis by long non-coding RNA HIF1A-AS1 in VSMCs: implications for TAA pathogenesis, Int. J. Clin. Exp. Pathol., 7, 7643-7652.

    PubMed  PubMed Central  Google Scholar 

  71. Zhang, X., Li, H., Guo, X., Hu, J., and Li, B. (2020) Long noncoding RNA hypoxia-inducible Factor-1 alpha-antisense RNA 1 regulates vascular smooth muscle cells to promote the development of thoracic aortic aneurysm by modulating apoptotic protease-activating factor 1 and targeting let-7g, J. Surg. Res., 255, 602-611, https://doi.org/10.1016/j.jss.2020.05.063.

    Article  CAS  PubMed  Google Scholar 

  72. Wang, S., Zhang, X., Yuan, Y., Tan, M., Zhang, L., et al. (2015) BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro, Eur. J. Cardiothorac. Surg., 47, 439-446, https://doi.org/10.1093/ejcts/ezu215.

    Article  PubMed  Google Scholar 

  73. Rabkin, S. W. (2017) The role matrix metalloproteinases in the production of aortic aneurysm, Prog. Mol. Biol. Transl. Sci., 147, 239-265, https://doi.org/10.1016/bs.pmbts.2017.02.002.

    Article  CAS  PubMed  Google Scholar 

  74. Maguire, E. M., Pearce, S. W. A., Xiao, R., Oo, A. Y., and Xiao, Q. (2019) Matrix metalloproteinase in abdominal aortic aneurysm and aortic dissection, Pharmaceuticals (Basel), 12, 118, https://doi.org/10.3390/ph12030118.

    Article  CAS  PubMed  Google Scholar 

  75. Li, Y. H., Li, X. M., Lu, M. S., Lv, M. F., and Jin, X. (2017) The expression of the BRM and MMP2 genes in thoracic aortic aneurysm and aortic dissection, Eur. Rev. Med. Pharmacol. Sci., 21, 2743-2748.

    PubMed  Google Scholar 

  76. Lin, Y., Huang, H., Yu, Y., Zhu, F., Xiao, W., et al. (2021) Long non-coding RNA RP11-465L10.10 promotes vascular smooth muscle cells phenotype switching and MMP9 expression via the NF-κB pathway, Ann. Transl. Med., 9, 1776, https://doi.org/10.21037/atm-21-6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pagani, G., Pandini, C., and Gandellini, P. (2022) Navigating the multiverse of antisense RNAs: the transcription- and RNA-dependent dimension, Noncoding RNA, 8, 74, https://doi.org/10.3390/ncrna8060074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cai, Z., Huang, J., Yang, J., Pan, B., Wang, W., et al. (2021) LncRNA SENCR suppresses abdominal aortic aneurysm formation by inhibiting smooth muscle cells apoptosis and extracellular matrix degradation, Bosn. J. Basic Med, Sci., 21, 323-330, https://doi.org/10.17305/bjbms.2020.4994.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, Z., Zou, G., Chen, X., Lu, W., Liu, J., et al. (2019) Knockdown of lncRNA PVT1 inhibits vascular smooth muscle cell apoptosis and extracellular matrix disruption in a murine abdominal aortic aneurysm model, Mol. Cells, 42, 218-227, https://doi.org/10.14348/molcells.2018.0162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, K., Cui, M., Zhang, K., Wang, G., and Zhai, S. (2020) LncRNA CRNDE affects the proliferation and apoptosis of vascular smooth muscle cells in abdominal aortic aneurysms by regulating the expression of Smad3 by Bcl-3, Cell Cycle, 19, 1036-1047, https://doi.org/10.1080/15384101.2020.1743915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sun, Y., Zhong, L., He, X., Wang, S., Lai, Y., et al. (2019) LncRNA H19 promotes vascular inflammation and abdominal aortic aneurysm formation by functioning as a competing endogenous RNA, J. Mol. Cell. Cardiol., 131, 66-81, https://doi.org/10.1016/j.yjmcc.2019.04.004.

    Article  CAS  PubMed  Google Scholar 

  82. He, X., Wang, S., Li, M., Zhong, L., Zheng, H., et al. (2019) Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis, Theranostics, 9, 5558-5576, https://doi.org/10.7150/thno.34463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Song, H., Yang, Y., Sun, Y., Wei, G., Zheng, H., et al. (2022) Circular RNA Cdyl promotes abdominal aortic aneurysm formation by inducing M1 macrophage polarization and M1-type inflammation, Mol. Ther., 30, 915-931, https://doi.org/10.1016/j.ymthe.2021.09.017.

    Article  CAS  PubMed  Google Scholar 

  84. Huang, S., Lu, W., Ge, D., Meng, N., Li, Y., et al. (2015) A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells, Autophagy, 11, 2172-2183, https://doi.org/10.1080/15548627.2015.1106663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, Y., Nie, W., Yao, K., Wang, Z., and He, H. (2016) Interleukin 6 induces expression of NADPH oxidase 2 in human aortic endothelial cells via long noncoding RNA MALAT1, Pharmazie, 71, 592-597, https://doi.org/10.1691/ph.2016.6598.

    Article  CAS  PubMed  Google Scholar 

  86. Navarro-Corcuera, A., Sehrawat, T. S., Jalan-Sakrikar, N., Gibbons, H. R., Pirius, N. E., et al. (2022) Long non-coding RNA ACTA2-AS1 promotes ductular reaction by interacting with the p300/ELK1 complex, J. Hepatol., 76, 921-933, https://doi.org/10.1016/j.jhep.2021.12.014.

    Article  CAS  PubMed  Google Scholar 

  87. Yu, B., Liu, L., Sun, H., and Chen, Y. (2015) Long noncoding RNA AK056155 involved in the development of Loeys-Dietz syndrome through AKT/PI3K signaling pathway, Int. J. Clin. Exp. Pathol., 8, 10768-10775.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lino Cardenas, C. L., Kessinger, C. W., Cheng, Y., MacDonald, C., MacGillivray, T., et al. (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm, Nat. Commun., 9, 1009, https://doi.org/10.1038/s41467-018-03394-7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  89. Pinard, A., Jones, G. T., and Milewicz, D. M. (2019) Genetics of thoracic and abdominal aortic diseases, Circ. Res., 124, 588-606, https://doi.org/10.1161/CIRCRESAHA.118.312436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. He, X., Li, X., Han, Y., Chen, G., Xu, T., et al. (2021) CircRNA Chordc1 protects mice from abdominal aortic aneurysm by contributing to the phenotype and growth of vascular smooth muscle cells, Mol. Ther. Nucleic Acids, 27, 81-98, https://doi.org/10.1016/j.omtn.2021.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gao, C., Sun, J., Zhang, Z., and Xu, Z. (2022) NEAT1 boosts the development of thoracic aortic aneurysm through targeting miR-324-5p/RAN, Arch. Med. Res., 53, 93-99, https://doi.org/10.1016/j.arcmed.2021.06.009.

    Article  CAS  PubMed  Google Scholar 

  92. Zhu, M., Tan, M., Xu, F., Huang, Y., and Yang, J. (2022) Long non-coding RNA XIST negatively regulates thoracic aortic aneurysm cell proliferation by targeting the miR-193a-5p/KLF7 axis, Cell Mol. Biol., 68, 188-193, https://doi.org/10.14715/cmb/2022.68.7.31.

    Article  PubMed  Google Scholar 

  93. Liang, K., Cui, M., Fu, X., Ma, J., Zhang, K., et al. (2021) LncRNA Xist induces arterial smooth muscle cell apoptosis in thoracic aortic aneurysm through miR-29b-3p/Eln pathway, Biomed. Pharmacother., 137, 111163, https://doi.org/10.1016/j.biopha.2020.111163.

    Article  CAS  PubMed  Google Scholar 

  94. Huang, B., Lu, S., Lai, H., Li, J., Sun, Y., and Wang, C. (2019) LncRNA LOXL1-AS is up-regulated in thoracic aortic aneurysm and regulated proliferation and apoptosis of aortic smooth muscle cells, Biosci. Rep., 39, BSR20191649, https://doi.org/10.1042/BSR20191649.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chen, S., Chen, H., Yu, C., Lu, R., Song, T., et al. (2019) Long noncoding RNA myocardial infarction associated transcript promotes the development of thoracic aortic by targeting microRNA-145 via the PI3K/Akt signaling pathway, J. Cell. Biochem., 120, 14405-14413, https://doi.org/10.1002/jcb.28695.

    Article  CAS  PubMed  Google Scholar 

  96. Fan, Z., Liu, S., and Zhou, H. (2022) LncRNA H19 regulates proliferation, apoptosis and ECM degradation of aortic smooth muscle cells via miR-1-3p/ADAM10 axis in thoracic aortic aneurysm, Biochem. Genet., 60, 790-806, https://doi.org/10.1007/s10528-021-10118-y.

    Article  CAS  PubMed  Google Scholar 

  97. Xiao, W., Li, X., Ji, C., Shi, J., and Pan, Y. (2020) LncRNA Sox2ot modulates the progression of thoracic aortic aneurysm by regulating miR-330-5p/Myh11, Biosci. Rep., 40, BSR20194040, https://doi.org/10.1042/BSR20194040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ou, M., Chu, Y., Zhang, Q., Zhao, H., and Song, Q. (2022) HOXA cluster antisense RNA 2 elevates KIAA1522 expression through microRNA-520d-3p and insulin like growth factor 2 mRNA binding protein 3 to promote the growth of vascular smooth muscle cells in thoracic aortic aneurysm, ESC Heart Fail., 9, 2955-2966, https://doi.org/10.1002/ehf2.13968.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Xia, Q., Zhang, L., Yan, H., Yu, L., Shan, W., and Jiang, H. (2020) LUCAT1 contributes to MYRF-dependent smooth muscle cell apoptosis and may facilitate aneurysm formation via the sequestration of miR-199a-5p, Cell. Biol. Int., 44, 755-763, https://doi.org/10.1002/cbin.11270.

    Article  CAS  PubMed  Google Scholar 

  100. Cai, B., Yang, B., Huang, D., Wang, D., Tian, J., et al. (2020) STAT3-induced up-regulation of lncRNA NEAT1 as a ceRNA facilitates abdominal aortic aneurysm formation by elevating TULP3, Biosci. Rep, 40, BSR20193299, https://doi.org/10.1042/BSR20193299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, D., Lu, D., Xu, R., Zhai, S., and Zhang, K. (2022) Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis, Microvasc. Res., 140, 104299, https://doi.org/10.1016/j.mvr.2021.104299.

    Article  CAS  PubMed  Google Scholar 

  102. Zou, L., Xia, P. F., Chen, L., and Hou, Y. Y. (2021) XIST knockdown suppresses vascular smooth muscle cell proliferation and induces apoptosis by regulating miR-1264/WNT5A/β-catenin signaling in aneurysm, Biosci. Rep., 41, BSR20201810, https://doi.org/10.1042/BSR20201810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, Y., Ren, L., Li, J., and Zou, H. (2021) Long non-coding RNA PVT1/microRNA miR-3127-5p/NCK-associated protein 1-like axis participates in the pathogenesis of abdominal aortic aneurysm by regulating vascular smooth muscle cells, Bioengineered, 12, 12583-12596, https://doi.org/10.1080/21655979.2021.2010384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lai, Y., Li, J., Zhong, L., He, X., Si, X., et al. (2019) The pseudogene PTENP1 regulates smooth muscle cells as a competing endogenous RNA, Clin. Sci. (Lond), 133, 1439-1455, https://doi.org/10.1042/CS20190156.

    Article  CAS  PubMed  Google Scholar 

  105. Li, D. Y., Busch, A., Jin, H., Chernogubova, E., Pelisek, J., et al. (2018) H19 induces abdominal aortic aneurysm development and progression, Circulation, 138, 1551-1568, https://doi.org/10.1161/CIRCULATIONAHA.117.032184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lin, H., You, B., Lin, X., Wang, X., Zhou, D., et al. (2020) Silencing of long non-coding RNA Sox2ot inhibits oxidative stress and inflammation of vascular smooth muscle cells in abdominal aortic aneurysm via microRNA-145-mediated Egr1 inhibition, Aging (Albany NY), 12, 12684-12702, https://doi.org/10.18632/aging.103077.

    Article  CAS  PubMed  Google Scholar 

  107. Li, H., Zhang, H., Wang, G., Chen, Z., and Pan, Y. (2020) LncRNA LBX2-AS1 facilitates abdominal aortic aneurysm through miR-4685-5p/LBX2 feedback loop, Biomed. Pharmacother., 129, 109904, https://doi.org/10.1016/j.biopha.2020.109904.

    Article  CAS  PubMed  Google Scholar 

  108. Ma, X., Xu, J., Lu, Q., Feng, X., Liu, J., et al. (2022) Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p, Int. Immunopharmacol., 107, 108691, https://doi.org/10.1016/j.intimp.2022.108691.

    Article  CAS  PubMed  Google Scholar 

  109. Liu, Y., Zhong, Z., Xiao, L., Li, W., Wang, Z., et al. (2021) Identification of Circ-FNDC3B, an overexpressed circRNA in abdominal aortic aneurysm, as a regulator of vascular smooth Muscle cells, Int. Heart. J., 62, 1387-1398, https://doi.org/10.1536/ihj.21-186.

    Article  CAS  PubMed  Google Scholar 

  110. Wei, J., Wang, H., and Zhao, Q. (2023) Circular RNA suppression of vascular smooth muscle apoptosis through the miR-545-3p/CKAP4 axis during abdominal aortic aneurysm formation, Vasc. Med., 28, 104-112, https://doi.org/10.1177/1358863X221132591.

    Article  CAS  PubMed  Google Scholar 

  111. Yang, R., Wang, Z., Meng, G., and Hua, L. (2020) Circular RNA CCDC66 facilitates abdominal aortic aneurysm through the overexpression of CCDC66, Cell. Biochem. Funct., 38, 830-838, https://doi.org/10.1002/cbf.3494.

    Article  CAS  PubMed  Google Scholar 

  112. Tian, Z., Sun, Y., Sun, X., Wang, J., and Jiang, T. (2020) LINC00473 inhibits vascular smooth muscle cell viability to promote aneurysm formation via miR-212-5p/BASP1 axis, Eur. J. Pharmacol., 873, 172935, https://doi.org/10.1016/j.ejphar.2020.172935.

    Article  CAS  PubMed  Google Scholar 

  113. Gareev, I., Beylerli, O., Aliev, G., Pavlov, V., Izmailov, A., Zhang, Y., Liang, Y., and Yang, G. (2020) The role of long non-coding RNAs in intracranial aneurysms and subarachnoid hemorrhage, Life (Basel), 10, 155, https://doi.org/10.3390/life10090155.

    Article  CAS  PubMed  ADS  Google Scholar 

  114. Wu, Z. Y., Trenner, M., Boon, R. A., Spin, J. M., Maegdefessel, L. (2020) Long noncoding RNAs in key cellular processes involved in aortic aneurysms, Atherosclerosis, 292, 112-118, https://doi.org/10.1016/j.atherosclerosis.2019.11.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. N. Osipenko for help in creating the figure.

Funding

The work supported by the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (no. 122020300041-7).

Author information

Authors and Affiliations

Authors

Contributions

M.S.N. proposed the concept for the review and edited the manuscript; A.N.K. collected the data and wrote the text; Iu.A.K. edited the text and created the figure.

Corresponding author

Correspondence to Maria S. Nazarenko.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflict of interests.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucher, A.N., Koroleva, I.A. & Nazarenko, M.S. Pathogenetic Significance of Long Non-Coding RNAs in the Development of Thoracic and Abdominal Aortic Aneurysms. Biochemistry Moscow 89, 130–147 (2024). https://doi.org/10.1134/S0006297924010085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924010085

Keywords

Navigation