Skip to main content
Log in

Pathological Correlates of Cognitive Decline in Parkinson’s Disease: From Molecules to Neural Networks

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the death of dopaminergic neurons in the substantia nigra and appearance of protein aggregates (Lewy bodies) consisting predominantly of α-synuclein in neurons. PD is currently recognized as a multisystem disorder characterized by severe motor impairments and various non-motor symptoms. Cognitive decline is one of the most common and worrisome non-motor symptoms. Moderate cognitive impairments (CI) are diagnosed already at the early stages of PD, usually transform into dementia. The main types of CI in PD include executive dysfunction, attention and memory decline, visuospatial impairments, and verbal deficits. According to the published data, the following mechanisms play an essential role demonstrates a crucial importance in the decline of the motor and cognitive functions in PD: (1) changes in the conformational structure of transsynaptic proteins and protein aggregation in presynapses; (2) synaptic transmission impairment; (3) neuroinflammation (pathological activation of the neuroglia); (4) mitochondrial dysfunction and oxidative stress; (5) metabolic disorders (hypometabolism of glucose, dysfunction of glycolipid metabolism; and (6) functional rearrangement of neuronal networks. These changes can lead to the death of dopaminergic cells in the substantia nigra and affect the functioning of other neurotransmitter systems, thus disturbing neuronal networks involved in the transmission of information related to the regulation of motor activity and cognitive functions. Identification of factors causing detrimental changes in PD and methods for their elimination will help in the development of new approaches to the therapy of PD. The goal of this review was to analyze pathological processes that take place in the brain and underlie the onset of cognitive disorders in PD, as well as to describe the impairments of cognitive functions in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

6-OHDA:

6-hydroxydopamine

αSyn:

α-synuclein

AD:

Alzheimer’s disease

CI:

cognitive impairment

CSF:

cerebrospinal fluid

FC:

functional connectivity

fMRI:

functional magnetic resonance imaging

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PET:

positron emission tomography

PD:

Parkinson’s disease

References

  1. Levin, O. S., and Fedorova, N. V. (2009) Parkinson’s Disease [in Russian], Orion Pharma Publishing, Moscow.

  2. Lees, A. J., Hardy, J., and Revesz, T. (2009) Parkinson’s disease, Lancet, 373, 2055-2066, https://doi.org/10.1016/s0140-6736(09)60492-x.

    Article  CAS  PubMed  Google Scholar 

  3. Brazhnik, E., Novikov, N., McCoy, A. J., Cruz, A. V., and Walters, J. R. (2014) Functional correlates of exaggerated oscillatory activity in basal ganglia output in hemiparkinsonian rats, Exp. Neurol., 26, 1563-1577, https://doi.org/10.1016/j.expneurol.2014.07.010.

    Article  CAS  Google Scholar 

  4. Brazhnik, E., Novikov, N., McCoy, A. J., Ilieva, N. M., Ghraib, M. W., and Walters, J. R. (2021) Early decreases in cortical mid-gamma peaks coincide with the onset of motor deficits and precede exaggerated beta build-up in rat models for Parkinson’s disease, Neurobiol. Dis., 155, 105393, https://doi.org/10.1016/j.nbd.2021.105393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Novikov, N. I., Brazhnik, E. S., and Kichigina, V. F. (2019) Application of opto- and chemogenetic methods to study motor disorders in Parkinson’s disease [in Russian], Modern Technol. Med., 11, 150-163, https://doi.org/10.17691/stm2019.11.2.21.

    Article  Google Scholar 

  6. Morozova, M. V., Brazhnik, E. S., Mysin, I. E., Popova, L. B., and Novikov, N. I. (2021) Contribution of the outer part of the pallidum to the oscillatory activity of motor neural networks in experimental model of Parkinson’s disease [in Russian], J. Higher Nerve Act., 72, 103-118, https://doi.org/10.31857/S0044467722010063.

    Article  Google Scholar 

  7. Ugryumov, M. V. (2015) Development of preclinical diagnostics and preventive treatment of neurodegenerative diseases, J. Neurol. Psychiatry, 11, 4-14, https://doi.org/10.17116/jnevro20151151114-14.

    Article  Google Scholar 

  8. Volles, M. J., and Lansbury, P. T. Jr. (2003) Zeroing in on the pathogenic form of α-synuclein and its mechanism of neurotoxicity in Parkinson’s disease, Biochemistry, 42, 7871-7878, https://doi.org/10.1021/bi030086j.

    Article  CAS  PubMed  Google Scholar 

  9. Dawson, T. M., and Dawson, V. L. (2003) Molecular pathways of neurodegeneration in Parkinson’s disease, Science, 302, 819-822, https://doi.org/10.1126/science.1087753.

    Article  CAS  PubMed  Google Scholar 

  10. Pastukhov, Yu. F., Ekimova, I. V., and Chesnokova, A. Yu. (2014) Molecular mechanisms of the pathogenesis of Parkinson’s disease and prospects for preventive therapy, in Neurodegenerative Diseases: From the Genome to the Whole Organism (Ugryumov, M. V., ed.) Vol. 1, pp. 309-348, Nauka, Moscow.

  11. Liepelt-Scarfone, I., Ophey, A., and Kalbe, E. (2022) Cognition in prodromal Parkinson’ disease, Prog. Brain Res., 269, 93-111, https://doi.org/10.1016/bs.pbr.2022.01.003.

    Article  PubMed  Google Scholar 

  12. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F. (1973) Brain dopamine and the syndromes of Parkinson and Hundington. Clinical, morphological and neurochemical correlations, J. Neurol. Sci., 20, 415-455, https://doi.org/10.1016/0022-510x(73)90175-5.

    Article  CAS  PubMed  Google Scholar 

  13. Weil, R. S., Costantini, A. A., and Schrag, A. E. (2018) Mild cognitive impairment in Parkinson’s disease – what is it? Curr. Neurol. Neurosci. Rep., 18, 17, https://doi.org/10.1007/s11910-018-0823-9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goldman, J. G., and Sieg, E. (2020) Cognitive impairment and dementia in Parkinson’s disease, Clin. Geriatr. Med., 36, 365-377, https://doi.org/10.1016/j.cger.2020.01.001.

    Article  PubMed  Google Scholar 

  15. Aarsland, D., Bronnick, K., and Fladby, T. (2011) Mild cognitive impairment in Parkinson’s disease, Curr. Neurol. Neurosci. Rep., 11, 371-378, https://doi.org/10.1007/s11910-011-0203-1.

    Article  PubMed  Google Scholar 

  16. Svenningsson, P., Westman, E., Ballard, C., and Aarsland, D. (2012) Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment, Lancet Neurol., 11, 697-707, https://doi.org/10.1016/S1474-4422(12)70152-7.

    Article  PubMed  Google Scholar 

  17. Blair, C. (2017) Educating executive function, Wiley Interdiscip. Rev. Cogn. Sci., 8, e1403, https://doi.org/10.1002/wcs.1403.

    Article  Google Scholar 

  18. Sagar, H. J., Sullivan, E. V., Gabrieli, J. D. E., Corkin, S., and Growdon, J. H. (1988) Temporal ordering and short-term memory deficits in Parkinson’s disease, Brain, 111, 525-539, https://doi.org/10.1093/brain/111.3.525.

    Article  PubMed  Google Scholar 

  19. Beato, R., Levy, R., Pillon, B., Vidal, C., Du Montcel, S. T., Deweer, B., Bonnet, A. M., Houeto, J. L., Dubois, B., and Cardoso, F. (2008) Working memory in Parkinson’s disease patients: clinical features and response to levodopa, Arq. Neuropsiquiatr., 66, 147-151, https://doi.org/10.1590/s0004-282x2008000200001.

    Article  PubMed  Google Scholar 

  20. Rottschy, C., Kleiman, A., Dogan, I., Langner, R., Mirzazade, S., Kronenbuerger, M., Werner, C., Shah, N. J., Schulz, J. B., Eickhoff, S. B., and Reetz, K. (2013) Diminished activation of motor working memory networks in Parkinson’s disease, PLoS One, 8, e61786, https://doi.org/10.1371/journal.pone.0061786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cooper, J. A., Sagar, H. J., Jordan, N., Harvey, N. S., and Sullivan, E. V. (1991) Cognitive impairment in early untreated Parkinson’s disease and its relationship to motor disability, Brain, 114, 2095-2122, https://doi.org/10.1093/brain/114.5.2095.

    Article  PubMed  Google Scholar 

  22. Kamei, S. (2012) Electroencephalogram and event-related potential analyses in Parkinson’s disease, Brain Nerve, 64, 433-443.

    PubMed  Google Scholar 

  23. Wang, X. P., Sun, B. M., and Ding, H. L. (2009) Changes of procedural learning in Chinese patients with non-demented Parkinson’s disease, Neurosci. Lett., 449, 161-163, https://doi.org/10.1016/j.neulet.2008.10.086.

    Article  CAS  PubMed  Google Scholar 

  24. Mesulam, M.-M. (2002) The frontal lobes: transcending the default mode through contignent encoding, in Principles of Frontal Lobe Function (Stuss, D. T., Knight, R. T., eds) Oxford University Press, Oxford/NewYork, https://doi.org/10.1093/acprof:oso/9780195134971.003.0002.

  25. Muslimovic, D., Post, B., Speelman, J. D., and Schmand, B. (2007) Motor procedural learning in Parkinson’s disease, Brain, 130, 2887-2897, https://doi.org/10.1093/brain/awm211.

    Article  CAS  PubMed  Google Scholar 

  26. Pereira, J. B., Svenningsson, P., Weintraub, D., Brønnick, K., Lebedev, A., Westman, E., and Aarsland, D. (2014) Initial cognitive decline is associated with cortical thinning in early Parkinson’s disease, Neurology, 82, 2017-2025, https://doi.org/10.1212/WNL.0000000000000483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bellucci, A., Mercuri, N. B., Venneri, A., Faustin, G. J., Longhena, F., Pizzi, M., Missale, C., and Spano, P. (2016) Review: Parkinson’s disease: from synaptic loss to connectome dysfunction, Neuropathol. Appl. Neurobiol., 42, 77-94, https://doi.org/10.1111/nan.12297.

    Article  CAS  PubMed  Google Scholar 

  28. Deng, I., Corrigan, F., Zhai, G., Zhou, X.-F., and Bobrovskaya, L. (2020) Lipopolysaccharide animal models of Parkinson’s disease: recent progress and relevance to clinical disease, Brain Behav. Immun. Health, 4, 100060, https://doi.org/10.1016/j.bbih.2020.100060.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun, F., Salinas, A. G., Filser, S., Blumenstock, S., Medina-Luque, J., Herms, J., and Sgobio, C. (2022) Impact of α-synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology, Brain Pathol., 32, e13036, https://doi.org/10.1111/bpa.13036.

    Article  CAS  PubMed  Google Scholar 

  30. Schulz-Schaeffer, W. J. (2010) The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia, Acta Neuropathol., 120, 131-143, https://doi.org/10.1007/s00401-010-0711-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Braak, H., Braak, E., Yilmazer, D., de Vos, R. A., Jansen, E. N., Bohl, J., and Jellinger, K. (1994) Amygdala pathology in Parkinson’s disease, Acta Neuropathol., 88, 493-500, https://doi.org/10.1007/BF00296485.

    Article  CAS  PubMed  Google Scholar 

  32. Marui, W., Iseki, E., Nakai, T., Miura, S., Kato, M., Uéda, K., and Kosaka, K. (2002) Progression and staging of Lewy pathology in brains from patients with dementia with Lewy bodies, J. Neurol. Sci., 195, 153-159, https://doi.org/10.1016/S0022-510X(02)00006-0.

    Article  PubMed  Google Scholar 

  33. Blennow, K., and Zetterberg, H. J. (2015) Amyloid and Tau biomarkers in CSF, Prev. Alzheimers Dis., 2, 46-50, https://doi.org/10.14283/jpad.2015.41.

    Article  CAS  Google Scholar 

  34. Cirrito, J. R., Kang, J. E., Lee, J., Stewart, F. R., Verges, D. K., Silverio, L. M., Bu, G., Mennerick, S., and Holtzman, D. M. (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo, Neuron, 58, 42-51, https://doi.org/10.1016/j.neuron.2008.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dionísio, P. A., Amaral, J. D., and Rodrigues, C. M. P. (2021) Oxidative stress and regulated cell death in Parkinson’s disease, Ageing Res Rev., 67, 101263, https://doi.org/10.1016/j.arr.2021.101263.

    Article  CAS  PubMed  Google Scholar 

  36. Kvartsberg, H., Portelius, E., Andreasson, U., Brinkmalm, G., Hellwig, K., Lelenta, L. N., Kornhuber, J., Hansson, O., Minthon, L., Spitzer, P., Maler, J. M., Zetterberg, H., Blennow, K., and Lewczuk, P. (2015) Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer’s disease patients and healthy controls, Alzheimers Res. Ther., 7, 40, https://doi.org/10.1186/s13195-015-0124-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yasuda, T., Nakata, Y., Choong, C.-J., and Mochizuki, H. (2013) Neurodegenerative changes initiated by presynaptic dysfunction, Transl. Neurodegener., 2, 1-5, https://doi.org/10.1186/2047-9158-2-16.

    Article  CAS  Google Scholar 

  38. Agliardi, C., Meloni, M., Guerini, F. R., Zanzottera, M., Bolognesi, E., Baglio, F., and Clerici, M. (2021) Oligomeric α-Syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinson’s disease, Neurobiol. Dis., 148, 105185, https://doi.org/10.1016/j.nbd.2020.105185.

    Article  CAS  PubMed  Google Scholar 

  39. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., and Killiany, R. J. (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage, 31, 968-980, https://doi.org/10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  40. Hessen, E., Stav, A. L., Auning, E., Selnes, P., Blomsø, L., Holmeide, C. E., Johansen, K. K., Eliassen, C. F., Reinvang, I., Fladby, T., and Aarsland, D. J. (2016) Neuropsychological profiles in mild cognitive impairment due to Alzheimer’s and Parkinson’s diseases, Parkinsons Dis., 6, 413-421, https://doi.org/10.3233/JPD-150761.

    Article  Google Scholar 

  41. Picconi, B., Piccoli, G., and Calabresi, P. (2012) Synaptic dysfunction in Parkinson’s disease, Adv. Exp. Med. Biol., 970, 553-572, https://doi.org/10.1007/978-3-7091-0932-8_24.

    Article  CAS  PubMed  Google Scholar 

  42. Feany, M. B., and Bender, W. W. (2000) A Drosophila model of Parkinson’s disease, Nature, 404, 394-398, https://doi.org/10.1038/35006074.

    Article  CAS  PubMed  Google Scholar 

  43. Masliah, E., Rockenstein, E., Veinbergs, I., Sagara, Y., Mallory, M., Hashimoto, M., and Mucke, L. (2001) b-Amyloid peptides enhance a-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease, Proc. Natl. Acad. Sci. USA, 98, 12245-12250, https://doi.org/10.1073/pnas.211412398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, W., Zhang, Q., Yang, Q., Liu, P., Sun, T., Xu, Y., Qian, X., Qiu, W., and Ma, C. (2020) Contribution of Alzheimer’s disease neuropathologic change to the cognitive dysfunction in human brains with Lewy body-related pathology, Neurobiol. Aging, 91, 56-65, https://doi.org/10.1016/j.neurobiolaging.2020.02.022.

    Article  PubMed  Google Scholar 

  45. Ryman, S. G., Yutsis, M., Tian, L., Henderson, V. W., Montine, T. J., Salmon, D. P., Galasko, D., and Poston, K. L. (2021) Cognition at each stage of Lewy body disease with co-occurring Alzheimer’s disease pathology, J. Alzheimers Dis., 80, 1243-1256, https://doi.org/10.3233/JAD-201187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burton, E. J., McKeith, I. G., Burn, D. J., Williams, D., and O’Brien, J. T. (2004) Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls, Brain, 127, 791-800, https://doi.org/10.1093/brain/awh088.

    Article  PubMed  Google Scholar 

  47. Kulisevsky, J., Avila, A., Barbanoj, M., Antonijoan, R., Berthier, M. L., and Gironell, A. (1996) Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson’s disease patients at different levodopa plasma levels, Brain, 119, 2121-2132, https://doi.org/10.1093/brain/119.6.2121.

    Article  PubMed  Google Scholar 

  48. Halliday, G. M., Leverenz, J. B., Schneider, J. S., and Adler, C. H. (2014) The neurobiological basis of cognitive impairment in Parkinson’s disease, Mov. Disord., 29, 634-650, https://doi.org/10.1002/mds.25857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bohnen, N. I., Kaufer, D. I., Hendrickson, R., Ivanco, L. S., Lopresti, B. J., Constantine, G. M., Mathis, C. A., Davis, J. G., Moore, R. Y., and DeKosky, S. T. (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia, J. Neurol., 253, 242-247, https://doi.org/10.1007/s00415-005-0971-0.

    Article  CAS  PubMed  Google Scholar 

  50. Gratwicke, J., Jahanshahi, M., and Foltynie, T. (2015) Parkinson’s disease dementia: a neural networks perspective, Brain, 138, 1454-1476, https://doi.org/10.1093/brain/awv104.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim, I., Shin, N.-Y., Bak, Y., Lee, P. H., Lee, S.-K., and Lim, S. M. (2017) Early-onset mild cognitive impairment in Parkinson’s disease: altered corticopetal cholinergic network, Sci. Rep., 7, 2381, https://doi.org/10.1038/s41598-017-02420-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, D. J., Milosevic, L., Gramer, R., Sasikumar, S., Al-Ozzi, T. M., De Vloo, P., Dallapiazza, R. F., Elias, G. J. B., Cohn, M., Kalia, S. K., Hutchison, W. D., Fasano, A., Lozano, A. M. (2019) Nucleus basalis of Meynert neuronal activity in Parkinson’s disease, J. Neurosurg., 132, 574-582, https://doi.org/10.3171/2018.11.JNS182386.

    Article  PubMed  Google Scholar 

  53. Ehrt, U., Broich, K., Larsen, J. P., Ballard, C., and Aarsland, D. (2010) Use of drugs with anticholinergic effect and impact on cognition in Parkinson’s disease: a cohort study, J. Neurol. Neurosurg. Psychiatry., 81, 160-165, https://doi.org/10.1136/jnnp.2009.186239.

    Article  PubMed  Google Scholar 

  54. Kitchigina, V., Vankov, A., Harley, C., and Sara, S. J. (1997) Novelty-elicited, noradrenaline-dependent enhancement of excitability in the dentate gyrus, Eur. J. Neurosci., 9, 41-47, https://doi.org/10.1111/j.1460-9568.1997.tb01351.x.

    Article  CAS  PubMed  Google Scholar 

  55. Kitchigina, V. F., Kutyreva, E. V., and Brazhnik, E. S. (2003) Modulation of theta rhythmicity in the medial septal neurons and hippocampal EEG in the awake rabbit via actions at noradrenergic α2-receptors, Neuroscience, 120, 509-521, https://doi.org/10.1016/s0306-4522(03)00331-2.

    Article  CAS  PubMed  Google Scholar 

  56. Bari, A., and Robbins, T. W. (2013) Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: possible relevance to ADHD, Psychopharmacology, 230, 89-111, https://doi.org/10.1007/s00213-013-3141-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Callahan, P. M., Callahan, P. M., Plagenhoef, M. R., Blake, D. T., and Terry, A. V. Jr. (2019) Atomoxetine improves memory and other components of executive function in young-adult rats and aged rhesus monkeys, Neuropharmacology, 155, 65-75, https://doi.org/10.1016/j.neuropharm.2019.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Varrone, A., Svenningsson, P., Marklund, P., Fatouros-Bergman, H., Forsberg, A., Halldin, C., Nilsson, L.-G., and Farde, L. (2015) 5-HT1B receptor imaging and cognition: a positron emission tomography study in control subjects and Parkinson’s disease patients, Synapse, 69, 365-374, https://doi.org/10.1002/syn.21823.

    Article  CAS  PubMed  Google Scholar 

  59. Ye, Z., Rae, C. L., Nombela, C., Ham, T., Rittman, T., Jones, P. S., Rodrıguez, P. V., Coyle-Gilchrist, I., Regenthal, R., Altena, E., Housden, C. R., Maxwell, H., Sahakian, B. J., Barker, R. A., Robbins, T. W., and Rowe, J. B. (2016) Predicting beneficial effects of atomoxetine and citalopram on response inhibition in Parkinson’s disease with clinical and neuroimaging measures, Hum. Brain Mapp., 37, 1026-1037, https://doi.org/10.1002/hbm.23087.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mattson, M. P., Gleichmann, M., and Cheng, A. (2008) Mitochondria in neuroplasticity and neurological disorders, Neuron, 60, 748-766, https://doi.org/10.1016/j.neuron.2008.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chaturvedi, R. K., and Beal, M. F. (2008) Mitochondrial approaches for neuroprotection, Ann. N. Y. Acad. Sci., 1147, 395-412, https://doi.org/10.1196/annals.1427.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Isobe, C., and Abe, T. Y. (2010) Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process, Neurosci. Lett., 469, 159-163, https://doi.org/10.1016/j.neulet.2009.11.065.

    Article  CAS  PubMed  Google Scholar 

  63. Vijayanathan, Y., Lim, F. T., Lim, S. M., Vijayanathan, Y., Lim, F. T., Lim, S. M., Long, C. M., Tan, M. P., Majeed, A. B. A., and Kalavathy, R. (2017) 6-OHDA lesioned adult zebrafish as a useful Parkinson’s disease model for dopaminergic neuroregeneration, Neurotoxicity Res., 32, 496-508, https://doi.org/10.1007/s12640-017-9778-x.

    Article  CAS  Google Scholar 

  64. Robea, M. A., Balmus, I. M., Ciobica, A., Strungaru, S., Plavan, G., Gorgan, L. D., Savuca, A., and Nicoara, M. (2020) Parkinson’s disease-induced zebrafish models: focussing on oxidative stress implications and sleep processes, Oxid. Med. Cell. Longev., 2020, 1370837, https://doi.org/10.1155/2020/1370837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Monzio Compagnoni, G., Di Fonzo, A., Corti, S., Comi, G. P., Bresolin, N., and Masliah, E. (2020) The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s disease and Parkinson’s disease, Mol. Neurobiol., 57, 2959-2980, https://doi.org/10.1007/s12035-020-01926-1.

    Article  CAS  PubMed  Google Scholar 

  66. Johnson, J., Mercado-Ayon, E., Mercado-Ayon, Y., Dong, Y. N., Halawani, S., Ngaba, L., and Lynch, D. R. (2021) Mitochondrial dysfunction in the development and progression of neurodegenerative diseases, Arch. Biochem. Biophys., 702, 108698, https://doi.org/10.1016/j.abb.2020.108698.

    Article  CAS  PubMed  Google Scholar 

  67. Gatt, A. P., Duncan, O. F., Attems, J., Francis, P. T., Ballard, C. G., and Bateman, J. M. (2016) Dementia in Parkinson’s disease is associated with enhanced mitochondrial complex I deficiency, Mov. Disord., 31, 352-359, https://doi.org/10.1002/mds.26513.

    Article  CAS  PubMed  Google Scholar 

  68. Cagin, U., Duncana, O. F., Gatt, A. P., Dionneb, M. S., Sweeneyc, S. T., and Batemana, J. M. (2015) Mitochondrial retrograde signaling regulates neuronal function, Proc. Natl Acad. Sci. USA, 112, E6000-E6009, https://doi.org/10.1073/pnas.1505036112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lozza, C., Baron, J. C., Eidelberg, D., Mentis, M. J., Carbon, M., and Marie, R. M. (2004) Executive processes in Parkinson’s disease: FDG-PET and network analysis, Hum Brain Mapp., 22, 236-245, https://doi.org/10.1002/hbm.20033.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Huang, Y.-X., Zhang, Q.-L., Huang, C.-L., Wu, W.-Q., and Sun, J.-W. (2021) Association of decreased serum BDNF with restless legs syndrome in Parkinson’s disease patients, Front. Neurol., 12, 734570, https://doi.org/10.3389/fneur.2021.734570.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Eidelberg, D., Moeller, J.R., Dhawan, V., Spetsieris, P., Takikawa, S., Ishikawa, T., Chaly, T., Robeson, W., Margouleff, D., Przedborski, S., and Fahn, S. (1994) The metabolic topography of parkinsonism, J. Cereb. Blood Flow Metab., 14, 783-801, https://doi.org/10.1038/jcbfm.1994.99.

    Article  CAS  PubMed  Google Scholar 

  72. Borghammer, P. (2012) Perfusion and metabolism imaging studies in Parkinson’s disease, Dan. Med. J., 59, B4466.

    PubMed  Google Scholar 

  73. Firbank, M. J., Yarnall, A. J., Lawson, R. A., Duncan, G. W., Khoo, T. K., Petrides, G. S., O’Brien, J. T., Barker, R. A., Maxwell, R. J., Brooks, D. J., and Burn, D. J. (2017) Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study, J. Neurol. Neurosurg. Psychiatry, 88, 310-316, https://doi.org/10.1136/jnnp-2016-313918.

    Article  CAS  PubMed  Google Scholar 

  74. Van Laere, K., Santens, P., Bosman, T., De Reuck, J., Mortelmans, L., and Dierck, R. (2004) Statistical parametric mapping of 99mTc-ECD SPECT in idiopathic Parkinson’s disease and multiple system atrophy with predominant parkinsonian features: correlation with clinical parameters, J. Nucl. Med., 24, 933-942.

    Google Scholar 

  75. Nobili, F., Morbelli, S., Arnaldi, D., Ferrara, M., Campus, C., Brugnolo, F., Mazzei, D., Mehrdad, N., Sambuceti, G., and Rodriguez, G. (2011) Radionuclide brain imaging correlates of cognitive impairment in Parkinson’s disease, J. Neurol. Sci., 310, 31-35, https://doi.org/10.1016/j.jns.2011.06.053.

    Article  PubMed  Google Scholar 

  76. Khomenko, Yu. G., Susin, D. S., Kataeva, G. V., Irishina, Yu. A., and Zavolokov, I. G. (2017) Features of cerebral glucose metabolism in patients with cognitive impairment in Parkinson’s disease [in Russian], J. Neurol. Psychiatry, 5, 46-51, https://doi.org/10.17116/jnevro20171175146-51.

    Article  Google Scholar 

  77. Rocher, A. B., Chapon, F., Blaizot, X., Baron, J.-C., and Chavoix, C. (2003) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons, NeuroImage, 20, 1894-1898.

    Article  PubMed  Google Scholar 

  78. Van Aalst, J., Ceccarini, J., Sunaert, S., Dupont, P., Koole, M., and Van Laere, K. (2021) In vivo synaptic density relates to glucose metabolism at rest in healthy subjects, but is strongly modulated by regional differences, J. Cereb. Blood Flow Metab., 41, 1978-1987, https://doi.org/10.1177/0271678X20981502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Milyukhina, I. V., Khomenko, Yu. G., Gracheva, E. V., Kataeva, G. V., and Gromova, E. A. (2020) Cerebral glucose metabolism and cognitive impairment in trembling and akinetic rigid forms of Parkinson’s disease [in Russian], Neurol. Neuropsy. Psychosom., 12, 42-48, https://doi.org/10.14412/2074-2711-2020-6-42-48.

    Article  Google Scholar 

  80. Yao, C., Niu, L., Fu, Y., Zhu, X., Yang, J., Zhao, P., Sun, X., Ma, Y., Li, S., and Li, J. (2022) Cognition, motor symptoms, and glycolipid metabolism in Parkinson’s disease with depressive symptoms, J. Neural Transm. (Vienna), 129, 563-573, https://doi.org/10.1007/s00702-021-02437-6.

    Article  CAS  PubMed  Google Scholar 

  81. Athauda, D., and Foltynie, T. (2016) Challenges in detecting disease modification in Parkinson’s disease clinical trials, Parkinsonism Relat. Disord., 32, 1-11, https://doi.org/10.1016/j.parkreldis.2016.07.019.

    Article  PubMed  Google Scholar 

  82. Yang, L., Wang, H., Liu, L., and Xie, A. (2018) The role of insulin/IGF-1/PI3K/Akt/GSK3β signaling in Parkinson’s disease dementia, Front. Neurosci., 12, 73, https://doi.org/10.3389/fnins.2018.00073.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Spinelli, M., Fusco, S., and Grassi, C. (2019) Brain insulin resistance and hippocampal plasticity: mechanisms and biomarkers of cognitive decline, Front. Neurosci., 13, 788, https://doi.org/10.3389/fnins.2019.00788.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hölscher, C. (2019) Insulin signaling impairment in the brain as a risk factor in Alzheimer’s disease, Front. Aging Neurosci., 11, 88, https://doi.org/10.3389/fnagi.2019.00088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Melzer, T. R., Watts, R., Macaskill, M. R., Pitcher, T. L., Livingston, L., Keenan, R. J., Dalrymple-Alford, J. C., and Anderson, T. J. (2012) Grey matter atrophy in cognitively impaired Parkinson’s disease, J. Neurol. Neurosurg. Psychiatry, 83, 188-194, https://doi.org/10.1136/jnnp-2011-300828.

    Article  PubMed  Google Scholar 

  86. Pereira, J. B., Aarsland, D., Ginestet, C. E., Lebedev, A. V., Wahlund, L.-O., Simmons, A., Volpe, G., and Westman, E. (2015) Aberrant cerebral network topology and mild cognitive impairment in early Parkinson’s disease, Hum. Brain Mapp., 36, 2980-2995, https://doi.org/10.1002/hbm.22822.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cummings, J. (1993) Frontal subcortical circuits and human behavior, Arch. Neurol., 50, 873-880, https://doi.org/10.1001/archneur.1993.00540080076020.

    Article  CAS  PubMed  Google Scholar 

  88. Stav, A. L., Johansen, K. K., Auning, E., Kalheim, L. F., Selnes, P., Bjørnerud, A., Hessen, E., Aarsland, D., and Fladby, T. (2016) Hippocampal subfield atrophy in relation to cerebrospinal fluid biomarkers and cognition in early Parkinson’s disease: a cross-sectional study, N.P.J. Parkinson’s Dis., 2, 15030, https://doi.org/10.1038/npjparkd.2015.30.

    Article  CAS  Google Scholar 

  89. Stav, A. L., Aarsland, D., Johansen, K. K., Hessen, E., Auning, E., and Fladby, T. (2015) Amyloid-b and a-synuclein cerebrospinal fluid biomarkers and cognition in early Parkinson’s disease, Parkinsonism Relat. Disord., 21, 758-764, https://doi.org/10.1016/j.parkreldis.2015.04.027.

    Article  PubMed  Google Scholar 

  90. Parnetti, L., Castrioto, A., Chiasserini, D., Persichetti, E., Tambasco, N., El-Agnaf, O., and Calabresi, P. (2013) Cerebrospinal fluid biomarkers in Parkinson disease, Nat. Rev. Neurol., 9, 131-140, https://doi.org/10.1038/nrneurol.2013.10.

    Article  CAS  PubMed  Google Scholar 

  91. Alves, G., Bronnick, K., Aarsland, D., Blennow, K., Zetterberg, H., Ballard, C., Kurz, M. W., Andreasson, U., Tysnes, O.-B., Larsen, J. P., and Mulugeta, E. (2010) CSF amyloid-b and tau proteins, and cognitive performance, in early and untreated Parkinson’s Disease: the Norwegian ParkWest study, J. Neurol. Neurosurg. Psychiatry, 81, 1080-1086, https://doi.org/10.1136/jnnp.2009.199950.

    Article  PubMed  Google Scholar 

  92. Rocha, N. P., Teixeira, A. L., Scalzo, P. L., Barbosa, I. G., de Sousa, M. S., Morato, I. B., Vieira, E. L., Christo, P. P., Palotás, A., and Reis, H. J. (2014) Plasma levels of soluble tumor necrosis factor receptors are associated with cognitive performance in Parkinson’s disease, Mov. Disord., 29, 527-531, https://doi.org/10.1002/mds.25752.

    Article  CAS  PubMed  Google Scholar 

  93. Fan, Z., Aman, Y., Ahmed, I., Chetelat, G., Landeau, B., Chaudhuri, K. R., Brooks, D. J., and Edison, P. (2015) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia, Alzheimers Dement., 11, 608-621.e7, https://doi.org/10.1016/j.jalz.2014.06.016.

    Article  PubMed  Google Scholar 

  94. Lindqvist, D., Hall, S., Surova, Y., Nielsen, H. M., Janelidze, S., Brundin, L., and Hansson, O. (2013) Cerebrospinal fluid inflammatory markers in Parkinson’s disease – associations with depression, fatigue, and cognitive impairment, Brain Behav. Immun., 33, 183-189, https://doi.org/10.1016/j.bbi.2013.07.007.

    Article  CAS  PubMed  Google Scholar 

  95. Aviles-Olmos, I., Limousin, P., Lees, A., and Foltynie, T. (2013) Parkinson’s disease, insulin resistance and novel agents of neuroprotection, Brain, 136, 374-384, https://doi.org/10.1093/brain/aws009.

    Article  PubMed  Google Scholar 

  96. Komleva, Y., Chernykh, A., Lopatina, O., Gorina, Y., Lokteva, I., Salmina, A., and Gollasch, M. (2021) Inflamm-aging and brain insulin resistance: new insights and role of life-style strategies on cognitive and social determinants in aging and neurodegeneration, Front. Neurosci., 14, 618395, https://doi.org/10.3389/fnins.2020.618395.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Petrou, M., Davatzikos, C., Hsieh, M., Foerster, B. R., Albin, R. L., Kotagal, V., Müller, M. L., Koeppe, R. A., Herman, W. H., Frey, K. A., and Bohnen, N. I. (2016) Diabetes, gray matter loss, and cognition in the setting of Parkinson disease, Acad. Radiol., 23, 577-581, https://doi.org/10.1016/j.acra.2015.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leverenz, J. B., Watson, G. S., Shofer, J., and Zabetian, C. P. (2011) Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson’s disease, Parkinsonism Relat. Discord., 17, 61-64, https://doi.org/10.1016/j.parkreldis.2010.10.003.

    Article  Google Scholar 

  99. Lim, N. S., Swanson, C. R., Cherng, H.-R., Unger, T. L., Xie, S. X., Weintraub, D., Marek, K., Stern, M. B., Siderowf, A., Trojanowski, J. Q., and Chen-Plotkin, A. S. (2016) Plasma EGF and cognitive decline in Parkinson’s disease and Alzheimer’s disease, Ann. Clin. Transl. Neurol., 3, 346-355, https://doi.org/10.1002/acn3.299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pramanik, S. K., Sanphui, P., Das, A. K., Banerji, B., and Biswas, S. C. (2023) Small-molecule Cdc25A inhibitors protect neuronal cells from death evoked by NGF deprivation and 6-hydroxydopamine, CS Chem. Neurosci., 14, 1226-1237, https://doi.org/10.1021/acschemneuro.2c00474.

    Article  CAS  Google Scholar 

  101. Shimoke, K., and Chiba, H. (2001) Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson’s disease, J. Neurosci. Res., 63, 402-409, https://doi.org/10.1002/1097-4547(20010301)63:5<402::AID-JNR1035>3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  102. Lorigados Pedre, L., Pavón Fuentes, N., Alvarez González, L., McRae, A., Serrano Sánchez, T., Blanco Lescano, L., and Macías González, R. (2002) Nerve growth factor levels in Parkinson’s disease and experimental parkinsonian rats, Brain Res., 952, 122-127, https://doi.org/10.1016/s0006-8993(02)03222-5.

    Article  CAS  PubMed  Google Scholar 

  103. Altar, C. A., Boylan, C. B., Jackson, C., Hershenson, S., Miller, J., Wiegand, S. J., Lindsay, R. M., and Hyman, C. (1992) Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo, Proc. Natl. Acad. Sci. USA, 89, 11347-11351, https://doi.org/10.1073/pnas.89.23.11347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sauer, H., Fischer, W., Nikkhah, G., Wiegand, S. J., Brundin, P., Lindsay, R. M., and Björklund, A. (1993) Brain-derived neurotrophic factor enhances function rather than survival of intrastriatal dopamine cell-rich grafts, Brain Res., 626, 37-44, https://doi.org/10.1016/0006-8993(93)90560-A.

    Article  CAS  PubMed  Google Scholar 

  105. Hernández-Vara, J., Sáez-Francàs, N., Lorenzo-Bosquet, C., Corominas-Roso, M., Cuberas-Borròs, G., Pozo, S. L.-D., Carter, S., Armengol-Bellapart, M., and Castell-Conesa, J. (2020) BDNF levels and nigrostriatal degeneration in “drug naïve” Parkinson’s disease patients. An “in vivo” study using I-123-FP-CIT SPECT, Park. Relat. Disord., 78, 31-35, https://doi.org/10.1016/j.parkreldis.2020.06.037.

    Article  Google Scholar 

  106. Huang, Y., Huang, C., and Yun, W. (2019) Peripheral BDNF/TrkB protein expression is decreased in Parkinson’s disease but not in essential tremor, J. Clin. Neurosci., 63, 176-181, https://doi.org/10.1016/j.jocn.2019.01.017.

    Article  CAS  PubMed  Google Scholar 

  107. Tessitore, A., Cirillo, M., and De Micco, R. (2019) Functional connectivity signatures of Parkinson’s disease, J. Parkinsons Dis., 9, 637-652, https://doi.org/10.3233/JPD-191592.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Peraza, L. R., Nesbitt, D., Lawson, R. A., Duncan, G. W., Yarnall, A. J., Khoo, T. K., Kaiser, M., Firbank, M. J., O'Brien, J. T., Barker, R. A., Brooks, D. J., Burn, D. J., and Taylor, J. P. (2017) Intra- and inter-network functional alterations in Parkinson’s disease with mild cognitive impairment, Hum Brain Mapp., 38, 1702-1715, https://doi.org/10.1002/hbm.23499.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhou, F., Tan, C., Song, C., Wang, M., Yuan, J., Liu, Y., Cai, S., Liu, Q., Shen, Q., Tang, Y., Li, X., and Liao, H. (2023) Abnormal intra- and inter-network functional connectivity of brain networks in early-onset Parkinson’s disease and late-onset Parkinson’s disease, Front. Aging Neurosci., 15, 1132723, https://doi.org/10.3389/fnagi.2023.1132723.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Williams-Gray, C. H., Evan, J. R., Goris, A., Foltynie, T., Ban, M., Robbins, T. W., Foltynie, T., Ban, M., Robbins, T. W., Brayne, C., Kolachana, B. S., Weinberger, D. R., Sawcer, S. J., and Blennow, K. (2009) The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort, Brain, 132, 2958-2969, https://doi.org/10.1093/brain/awp245.

    Article  PubMed  Google Scholar 

  111. Kehagia, A. A., Barker, R. A., and Robbins, T. W. (2013) Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis, Neurodegener. Dis., 11, 79-92, https://doi.org/10.1159/000341998.

    Article  PubMed  Google Scholar 

  112. Devignes, Q., Bordier, C., Viard, R., Defebvre, L., Kuchcinski, G., Leentjens, A. F. G., Lopes, R., and Dujardin, K. (2022) Resting-state functional connectivity in frontostriatal and posterior cortical subtypes in Parkinson’s disease-mild cognitive impairment, Mov. Disord., 37, 502-512, https://doi.org/10.1002/mds.28888.

    Article  PubMed  Google Scholar 

  113. Wiesman, A. I., Heinrichs-Graham, E., McDermott, T. J., Santamaria, P. M., Gendelman, H. E., and Wilson, T. W. (2016) Quiet connections: reduced fronto-temporal connectivity in nondemented Parkinson’s Disease during working memory encoding, Hum. Brain Mapp., 37, 3224-3235, https://doi.org/10.1002/hbm.23237.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Müller-Oehring, E. M., Sullivan, E. V., Pfefferbaum, A., Huang, N. C., Poston, K. L., Bronte-Stewart, H. M., and Schulte, T. (2015) Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson’s disease, Brain Imaging Behav., 9, 619-638, https://doi.org/10.1007/s11682-014-9317-9.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wolters, A. F., van de Weijer, S. C. F., Leentjens, A. F. G., Duits, A. A., Jacobs, H. I. L., and Kuijf, M. L. (2019) Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: a meta-analysis Parkinsonism, Relat. Disord., 62, 16-27, https://doi.org/10.1016/j.parkreldis.2018.12.016.

    Article  Google Scholar 

  116. Oswal, A., Brown, P., and Litvak, V. (2013) Synchronized neural oscillations and the pathophysiology of Parkinson’s disease, Curr. Opin. Neurol., 26, 662-670, https://doi.org/10.1097/WCO.0000000000000034.

    Article  PubMed  Google Scholar 

  117. Rosenblum, Y., Shiner, T., Bregman, N., Fahoum, F., Giladi, N., Maidan, I., and Mirelman, A. (2022) Event-related oscillations differentiate between cognitive, motor and visual impairments, J. Neurol., 269, 3529-3540, https://doi.org/10.1007/s00415-021-10953-4.

    Article  CAS  PubMed  Google Scholar 

  118. Peláez Suárez, A. A., Berrillo Batista, S., Pedroso Ibáñez, I., Casabona Fernández, E., Fuentes Campos, M., and Chacón, L. M. (2021) EEG-derived functional connectivity patterns associated with mild cognitive impairment in Parkinson’s disease, Behav. Sci., 11, 40, https://doi.org/10.3390/bs11030040.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mano, T., Kinugawa, K., Ozaki, M., Kataoka, H., and Sugie, K. (2022) Neural synchronization analysis of electroencephalography coherence in patients with Parkinson's disease-related mild cognitive impairment, Clin. Park. Relat. Disord., 6, 100140, https://doi.org/10.1016/j.prdoa.2022.100140.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Freichel, C., Neumann, M., Ballard, T., Müller, V., Woolley, M., Ozmen, L., Borroni, E., Kretzschmar, H. A., Haass, C., Spooren, W., and Kahle, P. J. (2007) Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice, Neurobiol. Aging, 28, 1421-1435, https://doi.org/10.1016/j.neurobiolaging.2006.06.013.

    Article  CAS  PubMed  Google Scholar 

  121. LeDoux, J. E. (2000) Emotion circuits in the brain, Annu. Rev. Neurosci., 23, 155-184, https://doi.org/10.1146/annurev.neuro.23.1.155.

    Article  CAS  PubMed  Google Scholar 

  122. Schneider, J. S., and Kovelowski, C. J., 2nd (1990) Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys, Brain Res., 519, 122-128, https://doi.org/10.1016/0006-8993(90)90069-n.

    Article  CAS  PubMed  Google Scholar 

  123. Brown, R. G., and Marsden, C. D. (1990) Cognitive function in Parkinson’s disease: from description to theory, Trends Neurosci., 13, 21-29, https://doi.org/10.1016/0166-2236(90)90058-I.

    Article  CAS  PubMed  Google Scholar 

  124. Schneider, J., Arvanitakis, Z., Yu, L., Boyle, P., Leurgans, S., and Bennett, D. (2012) Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies, Brain, 135, 3005-3014, https://doi.org/10.1093/brain/aws234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schneider, J. S., Marshall, C. A., Keibel, L., Snyder, N. W., Hill, M. P., Brotchie, J. M., Johnston, T. H., Waterhouse, B. D., and Kortagere, S. (2021) A novel dopamine D3R agonist SK609 with norepinephrine transporter inhibition promotes improvement in cognitive task performance in rodent and non-human primate models of Parkinson’s disease, Exper. Neurol., 335, 1135, https://doi.org/10.1016/j.expneurol.2020.113514.

    Article  CAS  Google Scholar 

  126. Klein, C., Rasĭnska, J., Empl, L., Sparenberg, M., Poshtibana, A., Haina, E. G., Iggenaa, D., Rivalanb, M., Winterb, Y., and Steinera, B. (2016) Physical exercise counteracts MPTP-induced changes in neural precursor cell proliferation in the hippocampus and restores spatial learning but not memory performance in the water maze, Behav. Brain Res., 307, 227-238, https://doi.org/10.1016/j.bbr.2016.02.040.

    Article  CAS  PubMed  Google Scholar 

  127. Das, N. R., Gangwal, R. P., Damre, M. V., Sangamwar, A. T., and Sharma, S. S. (2014) A PPAR-β/δ agonist is neuroprotective and decreases cognitive impairment in a rodent model of Parkinson’s disease, Curr. Neurovasc. Res., 11, 114-124, https://doi.org/10.2174/1567202611666140318114037.

    Article  CAS  PubMed  Google Scholar 

  128. Jackson-Lewis, V., Jakowec, M., Burke, R. E., and Przedborski, S. (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Neurodegeneration, 4, 257-269, https://doi.org/10.1016/1055-8330(95)90015-2.

    Article  CAS  PubMed  Google Scholar 

  129. Höglinger, G. U., Arias-Carrión, O., Ipach, B., and Oertel, W. H. (2014) Origin of the dopaminergic innervations of adult neurogenic areas, J. Comp. Neurol., 522, 2336-2348, https://doi.org/10.1002/cne.23537.

    Article  PubMed  Google Scholar 

  130. Prediger, R. D., Batista, L. C., Medeiros, R., Pandolfo, P., Florio, J. C., and Takahashi, R. N. (2006) The risk is in the air: intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s disease, Exp. Neurol., 202, 391-403, https://doi.org/10.1016/j.expneurol.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  131. Castro, A. A., Ghisoni, K., Latini, A., Quevedo, J., Tasca, C. I., and Prediger, R. D. (2012) Lithium and valproate prevent olfactory discrimination and short-term memory impairments in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rat model of Parkinson’s disease, Behav. Brain Res., 229, 208-215, https://doi.org/10.1016/j.bbr.2012.01.016.

    Article  CAS  PubMed  Google Scholar 

  132. Moreira, E. L., Rial, D., AguiarJr, A. S., Figueiredo, C. P., Siqueira, J. M., DalBó, S., Horst, H., de Oliveira, J., Mancini, G., dos Santos, T. S., Villarinho, J. G., Pinheiro, F. V., Marino-Neto, J., Ferreira, J., DeBem, A. F., Latini, A., Pizzolatti, M. G., Ribeiro-do-Valle, R. M., and Prediger, R. D., (2010) Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection intheintranasal1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid in rat model of Parkinson’s disease, J. Neural Transm., 117, 1337-1351, https://doi.org/10.1007/s00702-010-0464-x.

    Article  CAS  PubMed  Google Scholar 

  133. Williams-Gray, C. H., Foltynie, T., Lewis, S. J., and Barker, R. A. (2006) Cognitive deficits and psychosis in Parkinson’s disease: a review of pathophysiology and therapeutic options, CNS Drugs, 20, 477-505, https://doi.org/10.2165/00023210-200620060-00004.

    Article  CAS  PubMed  Google Scholar 

  134. Roy, M. A., Doiron, M., Talon-Croteau, J., Dupré, N., and Simard, M. (2018) Effects of antiparkinson medication on cognition in Parkinson’s disease: a systematic review, Can. J. Neurol. Sci., 45, 375-404, https://doi.org/10.1017/cjn.2018.21.

    Article  PubMed  Google Scholar 

  135. Meng, Y. H., Wang, P. P., Song, Y. X., and Wang, J. H. (2019) Cholinesterase inhibitors and memantine for Parkinson’s disease dementia and Lewy body dementia: a meta-analysis, Exp. Ther. Med., 17, 1611-1624.

    CAS  PubMed  Google Scholar 

  136. Zhang, Q., Aldridge, G. M., Narayanan, N. S., Anderson, S. W., and Uc, E. Y. (2020) Approach to cognitive impairment in Parkinson’s disease, Neurotherapeutics, 17, 1495-1510, https://doi.org/10.1007/s13311-020-00963-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Litvinenko, I. V., Odinak, M. M., Mogil’naia, V. I., and Perstenev, S. V. (2008) Memantine (akatinol) therapy of cognitive impairment in Parkinson’s disease complicated by dementia, Zhurn. Nevrol. Psikhiatr. Im. S. S. Korsakova, 108, 37-42.

    CAS  Google Scholar 

  138. Frouni, I., Kwan, C., Belliveau, S., and Huot, P. (2022) Cognition and serotonin in Parkinson’s disease, Prog Brain Res., 269, 373-403, https://doi.org/10.1016/bs.pbr.2022.01.013.

    Article  PubMed  Google Scholar 

  139. Mantovani, E., Zucchella, C., Argyriou, A. A., and Tamburin, S. (2023) Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinson’s disease: current evidence and future perspectives, Expert. Rev. Neurother., 23, 25-43, https://doi.org/10.1080/14737175.2023.2173576.

    Article  CAS  PubMed  Google Scholar 

  140. Weintraub, D., Aarsland, D., Biundo, R., Dobkin, R., Goldman, J., and Lewis, S. (2022) Management of psychiatric and cognitive complications in Parkinson’s disease, BMJ, 24, e068718, https://doi.org/10.1136/bmj-2021-068718.

    Article  Google Scholar 

  141. Dong, J., Cui, Y., Li, S., and Le, W. (2016) Current pharmaceutical treatments and alternative therapies of Parkinson’s disease, Curr. Neuropharmacol., 14, 339-355, https://doi.org/10.2174/1570159x14666151120123025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was performed within the framework of state assignment no. 075-01025-23-01.

Author information

Authors and Affiliations

Authors

Contributions

V.F.K. proposed the idea and edited the manuscript. All authors contributed equally to the article.

Corresponding author

Correspondence to Valentina F. Kitchigina.

Ethics declarations

The authors declare no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, N.I., Brazhnik, E.S. & Kitchigina, V.F. Pathological Correlates of Cognitive Decline in Parkinson’s Disease: From Molecules to Neural Networks. Biochemistry Moscow 88, 1890–1904 (2023). https://doi.org/10.1134/S0006297923110172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923110172

Keywords

Navigation