Skip to main content
Log in

Imbalance of Angiogenic and Growth Factors in Placenta in Maternal Hyperhomocysteinemia

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Abbreviations

BDNF:

brain-derived neurotrophic factor

FPP:

fetal part of placenta

Hcy:

homocysteine

HHcy:

hyperhomocysteinemia

MDA:

malondialdehyde

MMP:

matrix metalloproteinase

LPO:

lipid peroxidation

MPP:

maternal part of placenta

NGF:

nerve growth factor

OS:

oxidative stress

PE:

preeclampsia

SOD:

superoxide dismutase

VEGF:

vascular endothelial growth factor

References

  1. Burton, G. J., Fowden, A. L., and Thornburg, K. L. (2016) Placental origins of chronic disease, Physiol. Rev., 96, 1509-1565, https://doi.org/10.1152/physrev.00029.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roberts, J. M., and Escudero, C. (2012) The placenta in preeclampsia, Pregnancy Hypertens, 2, 72-83, https://doi.org/10.1016/j.preghy.2012.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Umapathy, A., Chamley, L. W., and James, J. L. (2020) Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies, Angiogenesis, 23, 105-117, https://doi.org/10.1007/s10456-019-09694-w.

    Article  PubMed  Google Scholar 

  4. Chen, D. B., and Zheng, J. (2014) Regulation of placental angiogenesis, Microcirculation, 21, 15-25, https://doi.org/10.1111/micc.12093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Y., and Zhao, S. (2010) Vascular Biology of the Placenta (Granger D. N., and Granger, J. P., eds) Morgan & Claypool Life Sciences, San Rafael (CA), p. 1-90.

  6. Ferrara, N. (2004) Vascular endothelial growth factor: basic science and clinical progress, Endocr. Rev., 25, 581-611, https://doi.org/10.1210/er.2003-0027.

    Article  CAS  PubMed  Google Scholar 

  7. Silva, J. F., and Serakides, R. (2016) Intrauterine trophoblast migration: A Comparative view of humans and rodents, Cell Adh. Migr., 10, 88-110, https://doi.org/10.1080/19336918.2015.1120397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gualdoni, G. S., Jacobo, P. V., Barril, C., Ventureira, M. R., and Cebral, E. (2021) Early abnormal placentation and evidence of vascular endothelial growth factor system dysregulation at the feto-maternal interface after periconceptional alcohol consumption, Front. Physiol., 12, 815760, https://doi.org/10.3389/fphys.2021.815760.

    Article  PubMed  Google Scholar 

  9. Sahay, A. S., Sundrani, D. P., and Joshi, S. R. (2017) Neurotrophins: role in placental growth and development, Vitam. Horm., 104, 243-261, https://doi.org/10.1016/bs.vh.2016.11.002.

    Article  CAS  PubMed  Google Scholar 

  10. Kawamura, K., Kawamura, N., Sato, W., Fukuda, J., Kumagai, J., and Tanaka, T. (2009) Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival, Endocrinology, 150, 3774-3782, https://doi.org/10.1210/en.2009-0213.

    Article  CAS  PubMed  Google Scholar 

  11. Fujita, K., Tatsumi, K., Kondoh, E., Chigusa, Y., Mogami, H., Fujii, T., Yura, S., Kakui, K., and Konishi, I. (2011) Differential expression and the anti-apoptotic effect of human placental neurotrophins and their receptors, Placenta, 32, 737-744, https://doi.org/10.1016/j.placenta.2011.07.001.

    Article  CAS  PubMed  Google Scholar 

  12. Kawamura, K., Kawamura, N., Okamoto, N., and Manabe, M. (2013) Suppression of choriocarcinoma invasion and metastasis following blockade of BDNF/TrkB signaling, Cancer Med., 2, 849-861, https://doi.org/10.1002/cam4.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Toti, P., Ciarmela, P., Florio, P., Volpi, N., Occhini, R., and Petraglia, F. (2006) Human placenta and fetal membranes express nerve growth factor mRNA and protein, J. Endocrinol. Invest., 29, 337-341, https://doi.org/10.1007/BF03344105.

    Article  CAS  PubMed  Google Scholar 

  14. Mayeur, S., Silhol, M., Moitrot, E., Barbaux, S., Breton, C., Gabory, A., Vaiman, D., Dutriez-Casteloot, I., Fajardy, I., Vambergue, A., Tapia-Arancibia, L., Bastide, B., Storme, L., Junien, C., Vieau, D., and Lesage, J. (2010) Placental BDNF/TrkB signaling system is modulated by fetal growth disturbances in rat and human, Placenta, 31, 785-791, https://doi.org/10.1016/j.placenta.2010.06.008.

    Article  CAS  PubMed  Google Scholar 

  15. Gilmore, J. H., Jarskog, L. F., and Vadlamudi, S. (2003) Maternal infection regulates BDNF and NGF expression in fetal and neonatal brain and maternal-fetal unit of the rat, J. Neuroimmunol., 138, 49-55, https://doi.org/10.1016/S0165-5728(03)00095-X.

    Article  CAS  PubMed  Google Scholar 

  16. Kodomari, I., Wada, E., Nakamura, S., and Wada, K. (2009) Maternal supply of BDNF to mouse fetal brain through the placenta, Neurochem. Int., 54, 95-98, https://doi.org/10.1016/j.neuint.2008.11.005.

    Article  CAS  PubMed  Google Scholar 

  17. Briana, D. D., and Malamitsi-Puchner, A. (2018) Developmental origins of adult health and disease: The metabolic role of BDNF from early life to adulthood, Metabolism, 81, 45-51, https://doi.org/10.1016/j.metabol.2017.11.019.

    Article  CAS  PubMed  Google Scholar 

  18. Boldyrev, A. A. (2009) Molecular mechanisms of homocysteine toxicity, Biochemistry (Moscow), 74, 589-598, https://doi.org/10.1134/s0006297909060017.

    Article  CAS  PubMed  Google Scholar 

  19. Skovierova, H., Vidomanova, E., Mahmood, S., Sopkova, J., Drgova, A., Cervenova, T., Halasova, E., and Lehotsky, J. (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health, Int. J. Mol. Sci., 17, 1733, https://doi.org/10.3390/ijms17101733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kasture, V., Sundrani, D., Randhir, K., Wagh, G., and Joshi, S. (2021) Placental apoptotic markers are associated with placental morphometry, Placenta, 115, 1-11, https://doi.org/10.1016/j.placenta.2021.08.051.

    Article  CAS  PubMed  Google Scholar 

  21. Kasture, V. V., Sundrani, D. P., and Joshi, S. R. (2018) Maternal one carbon metabolism through increased oxidative stress and disturbed angiogenesis can influence placental apoptosis in preeclampsia, Life Sci., 206, 61-69, https://doi.org/10.1016/j.lfs.2018.05.029.

    Article  CAS  PubMed  Google Scholar 

  22. Pereira, R. D., De Long, N. E., Wang, R. C., Yazdi, F. T., Holloway, A. C., and Raha, S. (2015) Angiogenesis in the placenta: the role of reactive oxygen species signaling, Biomed. Res. Int., 2015, 814543, https://doi.org/10.1155/2015/814543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Q., Li, Q., Chen, Y., Huang, X., Yang, I. H., Cao, L., Wu, W. K., and Tan, H. M. (2012) Homocysteine-impaired angiogenesis is associated with VEGF/VEGFR inhibition, Front. Biosci. (Elite Ed), 4, 2525-2535, https://doi.org/10.2741/e563.

    Article  PubMed  Google Scholar 

  24. Rodriguez-Nieto, S., Chavarria, T., Martinez-Poveda, B., Sanchez-Jimenez, F., Rodriguez Quesada, A., and Medina, M. A. (2002) Anti-angiogenic effects of homocysteine on cultured endothelial cells, Biochem. Biophys. Res. Commun., 293, 497-500, https://doi.org/10.1016/S0006-291X(02)00232-2.

    Article  CAS  PubMed  Google Scholar 

  25. Pan, L., Yu, G., Huang, J., Zheng, X., and Xu, Y. (2017) Homocysteine inhibits angiogenesis through cytoskeleton remodeling, Biosci. Rep., 37, BSR20170860, https://doi.org/10.1042/BSR20170860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Latacha, K. S., and Rosenquist, T. H. (2005) Homocysteine inhibits extra-embryonic vascular development in the avian embryo, Dev. Dyn., 234, 323-331, https://doi.org/10.1002/dvdy.20527.

    Article  CAS  PubMed  Google Scholar 

  27. Oosterbaan, A. M., Steegers, E. A., and Ursem, N. T. (2012) The effects of homocysteine and folic acid on angiogenesis and VEGF expression during chicken vascular development, Microvasc. Res., 83, 98-104, https://doi.org/10.1016/j.mvr.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  28. Xu, X., Yang, X. Y., He, B. W., Yang, W. J., and Cheng, W. W. (2016) Placental NRP1 and VEGF expression in pre-eclamptic women and in a homocysteine-treated mouse model of pre-eclampsia, Eur. J. Obstet. Gynecol. Reprod. Biol., 196, 69-75, https://doi.org/10.1016/j.ejogrb.2015.11.017.

    Article  CAS  PubMed  Google Scholar 

  29. Bala, R., Verma, R., Budhwar, S., Prakash, N., and Sachan, S. (2022) Fetal hyperhomocysteinemia is associated with placental inflammation and early breakdown of maternal-fetal tolerance in pre-term birth, Am. J. Reprod. Immunol., 88, e13589, https://doi.org/10.1111/aji.13589.

    Article  CAS  PubMed  Google Scholar 

  30. Arutjunyan, A. V., Milyutina, Y. P., Shcherbitskaia, A. D., Kerkeshko, G. O., Zalozniaia, I. V., and Mikhel, A. V. (2020) Neurotrophins of the fetal brain and placenta in prenatal hyperhomocysteinemia, Biochemistry (Moscow), 85, 248-259, https://doi.org/10.1134/S000629792002008X.

    Article  Google Scholar 

  31. Dai, C., Fei, Y., Li, J., Shi, Y., and Yang, X. (2021) A novel review of homocysteine and pregnancy complications, Biomed. Res. Int., 2021, 6652231, https://doi.org/10.1155/2021/6652231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenfeld, C. S. (2021) The placenta-brain-axis, J. Neurosci. Res., 99, 271-283, https://doi.org/10.1002/jnr.24603.

    Article  CAS  PubMed  Google Scholar 

  33. Shallie, P. D., and Naicker, T. (2019) The placenta as a window to the brain: a review on the role of placental markers in prenatal programming of neurodevelopment, Int. J. Dev. Neurosci., 73, 41-49, https://doi.org/10.1016/j.ijdevneu.2019.01.003.

    Article  CAS  PubMed  Google Scholar 

  34. Burton, G. J., and Jauniaux, E. (2018) Pathophysiology of placental-derived fetal growth restriction, Am. J. Obstet. Gynecol., 218, S745-S761, https://doi.org/10.1016/j.ajog.2017.11.577.

    Article  CAS  PubMed  Google Scholar 

  35. Burton, G. J., Redman, C. W., Roberts, J. M., and Moffett, A. (2019) Pre-eclampsia: pathophysiology and clinical implications, BMJ, 366, l2381, https://doi.org/10.1136/bmj.l2381.

    Article  PubMed  Google Scholar 

  36. Yakovleva, O., Bogatova, K., Mukhtarova, R., Yakovlev, A., Shakhmatova, V., Gerasimova, E., Ziyatdinova, G., Hermann, A., and Sitdikova, G. (2020) Hydrogen sulfide alleviates anxiety, motor, and cognitive dysfunctions in rats with maternal hyperhomocysteinemia via mitigation of oxidative stress, Biomolecules, 10, 995, https://doi.org/10.3390/biom10070995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arutjunyan, A., Kozina, L., Stvolinskiy, S., Bulygina, Y., Mashkina, A., and Khavinson, V. (2012) Pinealon protects the rat offspring from prenatal hyperhomocysteinemia, Int. J. Clin. Exp. Med., 5, 179-185.

    PubMed  PubMed Central  Google Scholar 

  38. Baydas, G., Koz, S. T., Tuzcu, M., and Nedzvetsky, V. S. (2008) Melatonin prevents gestational hyperhomocysteinemia-associated alterations in neurobehavioral developments in rats, J. Pineal Res., 44, 181-188, https://doi.org/10.1111/j.1600-079X.2007.00506.x.

    Article  CAS  PubMed  Google Scholar 

  39. Shcherbitskaya, A. D., Milyutina, Y. P., Zaloznyaya, I. V., Arutjunyan, A. V., Nalivaeva, N. N., and Zhuravin, I. A. (2017) The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus, Neurochem. J., 11, 296-301, https://doi.org/10.1134/s1819712417040080.

    Article  CAS  Google Scholar 

  40. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  41. Gavrilov, V. B., Gavrilova, A. R., and Mazhul, L. M. (1987) Analysis of methods for determining lipid peroxidation products in blood serum according to the test with TBA [in Russian], Vopr. Med. Khim., 33, 118-122.

    CAS  PubMed  Google Scholar 

  42. Vasilev, D. S., Shcherbitskaia, A. D., Tumanova, N. L., Mikhel, A. V., Milyutina, Y. P., Kovalenko, A. A., Dubrovskaya, N. M., Inozemtseva, D. B., Zalozniaia, I. V., and Arutjunyan, A. V. (2023) Maternal hyperhomocysteinemia disturbs the mechanisms of embryonic brain development and its maturation in early postnatal ontogenesis, Cells, 12, 189, https://doi.org/10.3390/cells12010189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bass, J. J., Wilkinson, D. J., Rankin, D., Phillips, B. E., Szewczyk, N. J., Smith, K., and Atherton, P. J. (2017) An overview of technical considerations for Western blotting applications to physiological research, Scand. J. Med. Sci. Sports, 27, 4-25, https://doi.org/10.1111/sms.12702.

    Article  CAS  PubMed  Google Scholar 

  44. Voronkina, I. V., Kirpichnikova, K. M., Smagina, L. V., Kozhukharova, I. V., and Gamaley, I. A. (2011) Change of activity of matrix metalloproteinases of mouse primary fibroblasts in the process of cultivation, Tsitologiya, 53, 49-54.

    CAS  Google Scholar 

  45. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 25, 402-408, https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  46. Mori, M., Yamashita, Y., Hiroi, Y., Shinjo, S., Asato, R., Hirai, K., Suzuki, K., and Yamamoto, S. (1999) Effect of single essential amino acid excess during pregnancy on dietary nitrogen utilization and fetal growth in rats, Asia Pac. J. Clin. Nutr., 8, 251-257, https://doi.org/10.1046/j.1440-6047.1999.00094.x.

    Article  CAS  PubMed  Google Scholar 

  47. Yakovleva, O. V., Ziganshina, A. R., Dmitrieva, S. A., Arslanova, A. N., Yakovlev, A. V., Minibayeva, F. V., Khaertdinov, N. N., Ziyatdinova, G. K., Giniatullin, R. A., and Sitdikova, G. F. (2018) Hydrogen sulfide ameliorates developmental impairments of rat offspring with prenatal hyperhomocysteinemia, Oxid. Med. Cell. Longev, 2018, 2746873, https://doi.org/10.1155/2018/2746873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Furukawa, S., Tsuji, N., and Sugiyama, A. (2019) Morphology and physiology of rat placenta for toxicological evaluation, J. Toxicol. Pathol., 32, 1-17, https://doi.org/10.1293/tox.2018-0042.

    Article  CAS  PubMed  Google Scholar 

  49. Esse, R., Barroso, M., Tavares de Almeida, I., and Castro, R. (2019) The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art, Int. J. Mol. Sci., 20, 867, https://doi.org/10.3390/ijms20040867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koz, S. T., Gouwy, N. T., Demir, N., Nedzvetsky, V. S., Etem, E., and Baydas, G. (2010) Effects of maternal hyperhomocysteinemia induced by methionine intake on oxidative stress and apoptosis in pup rat brain, Int. J. Dev. Neurosci., 28, 325-329, https://doi.org/10.1016/j.ijdevneu.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  51. Li, W., Li, Z., Zhou, D., Zhang, X., Yan, J., and Huang, G. (2019) Maternal folic acid deficiency stimulates neural cell apoptosis via miR-34a associated with Bcl-2 in the rat foetal brain, Int. J. Dev. Neurosci., 72, 6-12, https://doi.org/10.1016/j.ijdevneu.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  52. Ikonomidou, C., and Kaindl, A. M. (2011) Neuronal death and oxidative stress in the developing brain, Antioxid. Redox Signal, 14, 1535-1550, https://doi.org/10.1089/ars.2010.3581.

    Article  CAS  PubMed  Google Scholar 

  53. Pustygina, A. V., Milyutina, Y. P., Zaloznyaya, I. V., and Arutyunyan, A. V. (2015) Indices of oxidative stress in the brain of newborn rats subjected to prenatal hyperhomocysteinemia, Neurochem. J., 9, 60-65, https://doi.org/10.1134/s1819712415010079.

    Article  CAS  Google Scholar 

  54. Di Simone, N., Maggiano, N., Caliandro, D., Riccardi, P., Evangelista, A., Carducci, B., and Caruso, A. (2003) Homocysteine induces trophoblast cell death with apoptotic features, Biol. Reprod., 69, 1129-1134, https://doi.org/10.1095/biolreprod.103.015800.

    Article  CAS  PubMed  Google Scholar 

  55. Kamudhamas, A., Pang, L., Smith, S. D., Sadovsky, Y., and Nelson, D. M. (2004) Homocysteine thiolactone induces apoptosis in cultured human trophoblasts: a mechanism for homocysteine-mediated placental dysfunction? Am. J. Obstet. Gynecol., 191, 563-571, https://doi.org/10.1016/j.ajog.2004.01.037.

    Article  CAS  PubMed  Google Scholar 

  56. Faverzani, J. L., Hammerschmidt, T. G., Sitta, A., Deon, M., Wajner, M., and Vargas, C. R. (2017) Oxidative stress in homocystinuria due to cystathionine ss-synthase deficiency: findings in patients and in animal models, Cell Mol. Neurobiol., 37, 1477-1485, https://doi.org/10.1007/s10571-017-0478-0.

    Article  CAS  PubMed  Google Scholar 

  57. Krause, B. J., Hanson, M. A., and Casanello, P. (2011) Role of nitric oxide in placental vascular development and function, Placenta, 32, 797-805, https://doi.org/10.1016/j.placenta.2011.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baydas, G., Reiter, R. J., Akbulut, M., Tuzcu, M., and Tamer, S. (2005) Melatonin inhibits neural apoptosis induced by homocysteine in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels, Neuroscience, 135, 879-886, https://doi.org/10.1016/j.neuroscience.2005.05.048.

    Article  CAS  PubMed  Google Scholar 

  59. Li, Y., Gao, R., Liu, X., Chen, X., Liao, X., Geng, Y., Ding, Y., Wang, Y., and He, J. (2015) Folate deficiency could restrain decidual angiogenesis in pregnant mice, Nutrients, 7, 6425-6445, https://doi.org/10.3390/nu7085284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lai, W. K., and Kan, M. Y. (2015) Homocysteine-induced endothelial dysfunction, Ann. Nutr. Metab., 67, 1-12, https://doi.org/10.1159/000437098.

    Article  CAS  PubMed  Google Scholar 

  61. Chen, Y. Y., Gupta, M. B., Grattton, R., Powell, T. L., and Jansson, T. (2018) Down-regulation of placental folate transporters in intrauterine growth restriction, J. Nutr. Biochem., 59, 136-141, https://doi.org/10.1016/j.jnutbio.2018.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hague, W. M. (2003) Homocysteine and pregnancy, Best Pract. Res. Clin. Obstet. Gynaecol., 17, 459-469, https://doi.org/10.1016/S1521-6934(03)00009-9.

    Article  PubMed  Google Scholar 

  63. Li, H., Qu, D., McDonald, A., Isaac, S. M., Whiteley, K. J., Sung, H. K., Nagy, A., and Adamson, S. L. (2014) Trophoblast-specific reduction of VEGFA alters placental gene expression and maternal cardiovascular function in mice, Biol. Reprod., 91, 87, https://doi.org/10.1095/biolreprod.114.118299.

    Article  CAS  PubMed  Google Scholar 

  64. Silva, J. F., Ocarino, N. M., and Serakides, R. (2017) Spatiotemporal expression profile of proteases and immunological, angiogenic, hormonal and apoptotic mediators in rat placenta before and during intrauterine trophoblast migration, Reprod. Fertil. Dev., 29, 1774-1786, https://doi.org/10.1071/RD16280.

    Article  CAS  PubMed  Google Scholar 

  65. Gualdoni, G. S., Ventureira, M. R., Coll, T. A., Palomino, W. A., Barbeito, C. G., and Cebral, E. (2021) Perigestational alcohol consumption induces altered early placentation and organogenic embryo growth restriction by disruption of trophoblast angiogenic factors, Reprod. Biomed. Online, 42, 481-504, https://doi.org/10.1016/j.rbmo.2020.10.015.

    Article  CAS  PubMed  Google Scholar 

  66. Rennie, M. Y., Detmar, J., Whiteley, K. J., Jurisicova, A., Adamson, S. L., and Sled, J. G. (2012) Expansion of the fetoplacental vasculature in late gestation is strain dependent in mice, Am. J. Physiol. Heart Circ. Physiol., 302, H1261-H1273, https://doi.org/10.1152/ajpheart.00776.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coan, P. M., Ferguson-Smith, A. C., and Burton, G. J. (2004) Developmental dynamics of the definitive mouse placenta assessed by stereology, Biol. Reprod., 70, 1806-1813, https://doi.org/10.1095/biolreprod.103.024166.

    Article  CAS  PubMed  Google Scholar 

  68. Vaswani, K., Hum, M. W., Chan, H. W., Ryan, J., Wood-Bradley, R. J., Nitert, M. D., Mitchell, M. D., Armitage, J. A., and Rice, G. E. (2013) The effect of gestational age on angiogenic gene expression in the rat placenta, PLoS One, 8, e83762, https://doi.org/10.1371/journal.pone.0083762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mesiano, S. (2019) Endocrinology of Human Pregnancy and Fetal-Placental Neuroendocrine Development, in Yen and Jaffe's Reproductive Endocrinology (Eighth Edition), Elsevier, p. 256-284.e9, https://doi.org/10.1016/B978-0-323-47912-7.00011-1.

  70. Choi, S. J., Park, J. Y., Lee, Y. K., Choi, H. I., Lee, Y. S., Koh, C. M., and Chung, I. B. (2002) Effects of cytokines on VEGF expression and secretion by human first trimester trophoblast cell line, Am. J. Reprod. Immunol., 48, 70-76, https://doi.org/10.1034/j.1600-0897.2002.01071.x.

    Article  PubMed  Google Scholar 

  71. Hemberger, M., Nozaki, T., Masutani, M., and Cross, J. C. (2003) Differential expression of angiogenic and vasodilatory factors by invasive trophoblast giant cells depending on depth of invasion, Dev. Dyn., 227, 185-191, https://doi.org/10.1002/dvdy.10291.

    Article  CAS  PubMed  Google Scholar 

  72. Chen, J., and Khalil, R. A. (2017) Matrix metalloproteinases in normal pregnancy and preeclampsia, Prog. Mol. Biol. Transl. Sci., 148, 87-165, https://doi.org/10.1016/bs.pmbts.2017.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Funahashi, Y., Shawber, C. J., Sharma, A., Kanamaru, E., Choi, Y. K., and Kitajewski, J. (2011) Notch modulates VEGF action in endothelial cells by inducing matrix metalloprotease activity, Vasc. Cell, 3, 2, https://doi.org/10.1186/2045-824X-3-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, W., Mata, K. M., Mazzuca, M. Q., and Khalil, R. A. (2014) Altered matrix metalloproteinase-2 and -9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy, Biochem. Pharmacol., 89, 370-385, https://doi.org/10.1016/j.bcp.2014.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, P. F., Li, J. K., and Xiong, Q. (2007) Homocysteine decreases the invasion in cultured human trophoblasts: relationship between homocysteine and matrix metalloproteinase-2, -9 expression [in Chinese], Zhonghua Fu Chan Ke Za Zhi, 42, 184-186.

    CAS  PubMed  Google Scholar 

  76. Bescond, A., Augier, T., Chareyre, C., Garcon, D., Hornebeck, W., and Charpiot, P. (1999) Influence of homocysteine on matrix metalloproteinase-2: activation and activity, Biochem. Biophys. Res. Commun., 263, 498-503, https://doi.org/10.1006/bbrc.1999.1391.

    Article  CAS  PubMed  Google Scholar 

  77. Almeida-Toledano, L., Andreu-Fernandez, V., Aras-Lopez, R., Garcia-Algar, O., Martinez, L., and Gomez-Roig, M. D. (2021) Epigallocatechin gallate ameliorates the effects of prenatal alcohol exposure in a fetal alcohol spectrum disorder-like mouse model, Int. J. Mol. Sci., 22, 715, https://doi.org/10.3390/ijms22020715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bry, M., Kivela, R., Leppanen, V. M., and Alitalo, K. (2014) Vascular endothelial growth factor-B in physiology and disease, Physiol. Rev., 94, 779-794, https://doi.org/10.1152/physrev.00028.2013.

    Article  CAS  PubMed  Google Scholar 

  79. Vogtmann, R., Kuhnel, E., Dicke, N., Verkaik-Schakel, R. N., Plosch, T., Schorle, H., Stojanovska, V., Herse, F., Koninger, A., Kimmig, R., Winterhager, E., and Gellhaus, A. (2019) Human sFLT1 leads to severe changes in placental differentiation and vascularization in a transgenic hsFLT1/rtTA FGR mouse model, Front. Endocrinol. (Lausanne), 10, 165, https://doi.org/10.3389/fendo.2019.00165.

    Article  PubMed  Google Scholar 

  80. Chen, R., Lee, C., Lin, X., Zhao, C., and Li, X. (2019) Novel function of VEGF-B as an antioxidant and therapeutic implications, Pharmacol. Res., 143, 33-39, https://doi.org/10.1016/j.phrs.2019.03.002.

    Article  CAS  PubMed  Google Scholar 

  81. Nico, B., Mangieri, D., Benagiano, V., Crivellato, E., and Ribatti, D. (2008) Nerve growth factor as an angiogenic factor, Microvasc. Res., 75, 135-141, https://doi.org/10.1016/j.mvr.2007.07.004.

    Article  CAS  PubMed  Google Scholar 

  82. Caporali, A., and Emanueli, C. (2009) Cardiovascular actions of neurotrophins, Physiol. Rev., 89, 279-308, https://doi.org/10.1152/physrev.00007.2008.

    Article  CAS  PubMed  Google Scholar 

  83. Kim, H., Li, Q., Hempstead, B. L., and Madri, J. A. (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells, J. Biol. Chem., 279, 33538-33546, https://doi.org/10.1074/jbc.M404115200.

    Article  CAS  PubMed  Google Scholar 

  84. Sahay, A., Kale, A., and Joshi, S. (2020) Role of neurotrophins in pregnancy and offspring brain development, Neuropeptides, 83, 102075, https://doi.org/10.1016/j.npep.2020.102075.

    Article  CAS  PubMed  Google Scholar 

  85. Dhobale, M. (2014) Neurotrophins: role in adverse pregnancy outcome, Int. J. Dev. Neurosci., 37, 8-14, https://doi.org/10.1016/j.ijdevneu.2014.06.005.

    Article  CAS  PubMed  Google Scholar 

  86. Dhobale, M. (2017) Neurotrophic factors and maternal nutrition during pregnancy, Vitam. Horm., 104, 343-366, https://doi.org/10.1016/bs.vh.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  87. Mayeur, S., Lukaszewski, M. A., Breton, C., Storme, L., Vieau, D., and Lesage, J. (2011) Do neurotrophins regulate the feto-placental development? Med. Hypotheses, 76, 726-728, https://doi.org/10.1016/j.mehy.2011.02.008.

    Article  CAS  PubMed  Google Scholar 

  88. Garces, M. F., Sanchez, E., Torres-Sierra, A. L., Ruiz-Parra, A. I., Angel-Muller, E., Alzate, J. P., Sanchez, A. Y., Gomez, M. A., Romero, X. C., Castaneda, Z. E., Sanchez-Rebordelo, E., Dieguez, C., Nogueiras, R., and Caminos, J. E. (2014) Brain-derived neurotrophic factor is expressed in rat and human placenta and its serum levels are similarly regulated throughout pregnancy in both species, Clin. Endocrinol. (Oxf), 81, 141-151, https://doi.org/10.1111/cen.12391.

    Article  CAS  PubMed  Google Scholar 

  89. Sahay, A. S., Sundrani, D. P., Wagh, G. N., Mehendale, S. S., and Joshi, S. R. (2015) Neurotrophin levels in different regions of the placenta and their association with birth outcome and blood pressure, Placenta, 36, 938-943, https://doi.org/10.1016/j.placenta.2015.06.006.

    Article  CAS  PubMed  Google Scholar 

  90. Sahay, A. S., Jadhav, A. T., Sundrani, D. P., Wagh, G. N., and Joshi, S. R. (2019) Differential expression of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in different regions of normal and preeclampsia placentae, Clin. Exp. Hypertens, 42, 360-364, https://doi.org/10.1080/10641963.2019.1665677.

    Article  CAS  PubMed  Google Scholar 

  91. Dhobale, M. V., Pisal, H. R., Mehendale, S. S., and Joshi, S. R. (2013) Differential expression of human placental neurotrophic factors in preterm and term deliveries, Int. J. Dev. Neurosci., 31, 719-723, https://doi.org/10.1016/j.ijdevneu.2013.09.006.

    Article  CAS  PubMed  Google Scholar 

  92. Kawamura, K., Kawamura, N., Kumazawa, Y., Kumagai, J., Fujimoto, T., and Tanaka, T. (2011) Brain-derived neurotrophic factor/tyrosine kinase B signaling regulates human trophoblast growth in an in vivo animal model of ectopic pregnancy, Endocrinology, 152, 1090-1100, https://doi.org/10.1210/en.2010-1124.

    Article  CAS  PubMed  Google Scholar 

  93. Frank, P., Barrientos, G., Tirado-Gonzalez, I., Cohen, M., Moschansky, P., Peters, E. M., Klapp, B. F., Rose, M., Tometten, M., and Blois, S. M. (2014) Balanced levels of nerve growth factor are required for normal pregnancy progression, Reproduction, 148, 179-189, https://doi.org/10.1530/REP-14-0112.

    Article  CAS  PubMed  Google Scholar 

  94. Kanai-Azuma, M., Kanai, Y., Matsuda, H., Kurohmaru, M., Tachi, C., Yazaki, K., and Hayashi, Y. (1997) Nerve growth factor promotes giant-cell transformation of mouse trophoblast cells in vitro, Biochem. Biophys. Res. Commun., 231, 309-315, https://doi.org/10.1006/bbrc.1996.6032.

    Article  CAS  PubMed  Google Scholar 

  95. Fahnestock, M., and Shekari, A. (2019) ProNGF and neurodegeneration in Alzheimer’s disease, Front. Neurosci., 13, 129, https://doi.org/10.3389/fnins.2019.00129.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Teng, K. K., Felice, S., Kim, T., and Hempstead, B. L. (2010) Understanding proneurotrophin actions: Recent advances and challenges, Dev. Neurobiol., 70, 350-359, https://doi.org/10.1002/dneu.20768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, R., Kermani, P., Teng, K. K., and Hempstead, B. L. (2001) Regulation of cell survival by secreted proneurotrophins, Science, 294, 1945-1948, https://doi.org/10.1126/science.1065057.

    Article  CAS  PubMed  Google Scholar 

  98. Fleitas, C., Pinol-Ripoll, G., Marfull, P., Rocandio, D., Ferrer, I., Rampon, C., Egea, J., and Espinet, C. (2018) proBDNF is modified by advanced glycation end products in Alzheimer’s disease and causes neuronal apoptosis by inducing p75 neurotrophin receptor processing, Mol. Brain, 11, 68, https://doi.org/10.1186/s13041-018-0411-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gilmore, J. H., Jarskog, L. F., and Vadlamudi, S. (2005) Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat, J. Neuroimmunol., 159, 106-112, https://doi.org/10.1016/j.jneuroim.2004.10.008.

    Article  CAS  PubMed  Google Scholar 

  100. Fornes, R., Hu, M., Maliqueo, M., Kokosar, M., Benrick, A., Carr, D., Billig, H., Jansson, T., Manni, L., and Stener-Victorin, E. (2016) Maternal testosterone and placental function: Effect of electroacupuncture on placental expression of angiogenic markers and fetal growth, Mol. Cell. Endocrinol., 433, 1-11, https://doi.org/10.1016/j.mce.2016.05.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, grant 22-15-00393 (investigation of the effects of HHcy on molecular and cellular processes of placenta development), and by the State Budget Project of the Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, project no. 1021062812133-0-3.2.2 (investigation of the parameters of oxidative stress and apoptosis in placenta).

Author information

Authors and Affiliations

Authors

Contributions

I. Yu. Kogan, A. V. Arutjunyan – conceptualization and supervision of work; I. V. Zalozniaia, Yu. P. Milyutina, A. D. Shcherbitskaia, A. V. Mikhel, D. B. Inozemtseva – conducting experiments; Yu. P. Milyutina, A. D. Shcherbitskaia, I. V. Zalozniaia, A. V. Mikhel, D. B. Inozemtseva, G. O. Kerkeshko, D. S. Vasiliev, A. A. Kovalenko – processing of the results; A. V. Arutjunyan, G. O. Kerkeshko, Yu. P. Milyutina, A. D. Shcherbitskaia – discussion of the results of the study; A. V. Arutjunyan, G. O. Kerkeshko – writing the text of the paper; A. V. Arutjunyan, G. O. Kerkeshko, Yu. P. Milyutina, A. D. Shcherbitskaia – editing of the final text of the paper.

Corresponding author

Correspondence to Alexander V. Arutjunyan.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutjunyan, A.V., Kerkeshko, G.O., Milyutina, Y.P. et al. Imbalance of Angiogenic and Growth Factors in Placenta in Maternal Hyperhomocysteinemia. Biochemistry Moscow 88, 262–279 (2023). https://doi.org/10.1134/S0006297923020098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923020098

Keywords

Navigation