Skip to main content
Log in

The Effect of Chemical Chaperones on Proteins with Different Aggregation Kinetics

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Formation and accumulation of protein aggregates adversely affect intracellular processes in living cells and are negative factors in the production and storage of protein preparations. Chemical chaperones can prevent protein aggregation, but this effect is not universal and depends on the target protein structure and kinetics of its aggregation. We studied the effect of betaine (Bet) and lysine (Lys) on thermal aggregation of muscle glycogen phosphorylase b (Phb) at 48°C (aggregation order, n = 0.5), UV-irradiated Phb (UV-Phb) at 37°C (n = 1), and apo-form of Phb (apo-Phb) at 37°C (n = 2). Using dynamic light scattering, differential scanning calorimetry, and analytical ultracentrifugation, we have shown that Bet protected Phb and apo-Phb from aggregation, but accelerated the aggregation of UV-Phb. At the same time, Lys prevented UV-Phb and apo-Phb aggregation, but increased the rate of Phb aggregation. The mechanisms of chemical chaperone action on the tertiary and quaternary structures and kinetics of thermal aggregation of the target proteins are discussed. Comparison of the effects of chemical chaperones on the proteins with different aggregation kinetics provides more complete information on the mechanism of their action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

apo-Phb :

apo form of glycogen phosphorylase b

AUC:

analytical ultracentrifugation

Bet:

betaine

DLS:

dynamic light scattering

DSC:

differential scanning calorimetry

IS:

ionic strength

Lys:

lysine

Phb :

glycogen phosphorylase b

UV-Phb :

UV-irradiated glycogen phosphorylase b

References

  1. Wang, W., and Roberts, C. J. (2018) Protein aggregation – mechanisms, detection, and control, Int. J. Pharm., 550, 251-268, https://doi.org/10.1016/j.ijpharm.2018.08.043.

    Article  CAS  PubMed  Google Scholar 

  2. Siddiqi, M. K., Alam, P., Chaturvedi, S. K., Shahein, Y. E., and Khan, R. H. (2017) Mechanisms of protein aggregation and inhibition, Front. Biosci., 9, 1-20, https://doi.org/10.2741/e781.

    Article  Google Scholar 

  3. Hartl, F. U. (2017) Protein misfolding diseases, Annu. Rev. Biochem., 86, 21-26, https://doi.org/10.1146/annurev-biochem-061516-044518.

    Article  CAS  PubMed  Google Scholar 

  4. Harding, J. J. (1998) Cataract, Alzheimer’s disease, and other conformational diseases, Curr. Opin. Ophthalmol., 9, 10-13, https://doi.org/10.1097/00055735-199802000-00003.

    Article  CAS  PubMed  Google Scholar 

  5. Stefani, M., and Dobson, C. M. (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution, J. Mol. Med. (Berl), 81, 678-699, https://doi.org/10.1007/s00109-003-0464-5.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, W., Nema, S., and Teagarden, D. (2010) Protein aggregation-pathways and influencing factors, Int. J. Pharm., 390, 89-99, https://doi.org/10.1016/j.ijpharm.2010.02.025.

    Article  CAS  PubMed  Google Scholar 

  7. Kurganov, B. I. (2002) Kinetics of protein aggregation. Quantitative estimation of the chaperone-like activity in test-systems based on suppression of protein aggregation, Biochemistry (Moscow), 67, 409-422, https://doi.org/10.1023/a:1015277805345.

    Article  CAS  PubMed  Google Scholar 

  8. Chebotareva, N. A., Roman, S. G., and Kurganov, B. I. (2016) Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins, Biophys. Rev., 8, 397-407, https://doi.org/10.1007/s12551-016-0220-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chebotareva, N. A., Eronina, T. B., Roman, S. G., Mikhaylova, V. V., Kleymenov, S. Y., and Kurganov, B. I. (2019) Kinetic regime of Ca2+ and Mg2+-induced aggregation of phosphorylase kinase at 40°C, Int. J. Biol. Macromol., 138, 181-187, https://doi.org/10.1016/j.ijbiomac.2019.06.240.

    Article  CAS  PubMed  Google Scholar 

  10. Borzova, V. A., Markossian, K. A., Kara, D. A., and Kurganov, B. I. (2015) Kinetic regime of dithiothreitol-induced aggregation of bovine serum albumin, Int. J. Biol. Macromol., 80, 130-138, https://doi.org/10.1016/j.ijbiomac.2015.06.040.

    Article  CAS  PubMed  Google Scholar 

  11. Kurganov, B. I. (2018) Kinetic regime of aggregation of UV-irradiated glyceraldehyde-3-phosphate dehydrogenase from rabbit skeletal muscle, Biochem. Biophys. Res. Commun., 495, 1182-1186, https://doi.org/10.1016/j.bbrc.2017.11.166.

    Article  CAS  PubMed  Google Scholar 

  12. Kinne, R. K. (1993) The role of organic osmolytes in osmoregulation: from bacteria to mammals, J. Exp. Zool., 265, 346-355, https://doi.org/10.1002/jez.1402650403.

    Article  CAS  PubMed  Google Scholar 

  13. Yancey, P. H. (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses, J. Exp. Biol., 208 (Pt 15), 2819-2830, https://doi.org/10.1242/jeb.01730.

    Article  CAS  Google Scholar 

  14. Bolen, D. W. (2001) Protein stabilization by naturally occurring osmolytes, Methods Mol. Biol., 168, 17-36, https://doi.org/10.1385/1-59259-193-0:017.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, R. (2009) Role of naturally occurring osmolytes in protein folding and stability, Arch. Biochem. Biophys., 491, 1-6, https://doi.org/10.1016/j.abb.2009.09.007.

    Article  CAS  PubMed  Google Scholar 

  16. Khan, S. H., Ahmad, N., Ahmad, F., and Kumar, R. (2010) Naturally occurring organic osmolytes: from cell physiology to disease prevention, IUBMB Life, 62, 891-895, https://doi.org/10.1002/iub.406.

    Article  CAS  PubMed  Google Scholar 

  17. Caldas, T., Demont-Caulet, N., Ghazi, A., and Richarme, G. (1999) Thermoprotection by glycine betaine and choline, Microbiology (Reading), 145 (Pt 9), 2543-2548, https://doi.org/10.1099/00221287-145-9-2543.

    Article  Google Scholar 

  18. Mortazavi, M., Shokrgozar, M. A., Sardari, S., Azadmanesh, K., Mahdian, R., et al. (2018) Physicochemical screening for chemical stabilizer of erythropoietin to prevent its aggregation, Prep. Biochem. Biotechnol., 48, 121-127, https://doi.org/10.1080/10826068.2017.1405270.

    Article  CAS  PubMed  Google Scholar 

  19. Venkatraman, A., Murugan, E., Lin, S. J., Peh, G. S. L., Rajamani, L., and Mehta, J. S. (2020) Effect of osmolytes on in-vitro aggregation properties of peptides derived from TGFBIp, Sci. Rep., 10, 4011, https://doi.org/10.1038/s41598-020-60944-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhojane, P. P., Joshi, S., Sahoo, S.J., and Rathore, A. S. (2021) Unexplored excipients in biotherapeutic formulations: natural osmolytes as potential stabilizers against thermally induced aggregation of IgG1 biotherapeutics, AAPS PharmSciTech., 23, 26, https://doi.org/10.1208/s12249-021-02183-8.

    Article  CAS  PubMed  Google Scholar 

  21. Dar, M. A., Wahiduzzaman, Islam, A., Hassan, M. I., and Ahmad, F. (2018) Counteraction of the deleterious effects of urea on structure and stability of mammalian kidney proteins by osmolytes, Int. J. Biol. Macromol., 107 (Pt B), 1659-1667, https://doi.org/10.1016/j.ijbiomac.2017.10.021.

    Article  CAS  Google Scholar 

  22. Saha, I., Singh, V., Burra, G., and Thakur, A. K. (2018) Osmolytes modulate polyglutamine aggregation in a sequence dependent manner, J. Pept. Sci., 24, e3115, https://doi.org/10.1002/psc.3115.

    Article  CAS  PubMed  Google Scholar 

  23. Dasgupta, M., and Kishore, N. (2017) Selective inhibition of aggregation/fibrillation of bovine serum albumin by osmolytes: mechanistic and energetics insights, PLoS One, 12, e0172208, https://doi.org/10.1371/journal.pone.0172208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Natalello, A., Liu, J., Ami, D., Doglia, S. M., and de Marco, A. (2009) The osmolyte betaine promotes protein misfolding and disruption of protein aggregates, Proteins, 75, 509-517, https://doi.org/10.1002/prot.22266.

    Article  CAS  PubMed  Google Scholar 

  25. Singh, L. R., Dar, T. A., Rahman, S., Jamal, S., and Ahmad, F. (2009) Glycine betaine may have opposite effects on protein stability at high and low pH values, Biochim. Biophys. Acta, 1794, 929-935, https://doi.org/10.1016/j.bbapap.2009.02.005.

    Article  CAS  PubMed  Google Scholar 

  26. Sabbaghian, M., Ebrahim-Habibi, A., Hosseinkhani, S., Ghasemi, A., and Nemat-Gorgani, M. (2011) Prevention of thermal aggregation of an allosteric protein by small molecules: some mechanistic insights, Int. J. Biol. Macromol., 49, 806-813, https://doi.org/10.1016/j.ijbiomac.2011.07.016.

    Article  CAS  PubMed  Google Scholar 

  27. Li, S., Zheng, Y., Xu, P., Zhu, X., and Zhou, C. (2018) L-Lysine and L-arginine inhibit myosin aggregation and interact with acidic amino acid residues of myosin: The role in increasing myosin solubility, Food Chem., 242, 22-28, https://doi.org/10.1016/j.foodchem.2017.09.033.

    Article  CAS  PubMed  Google Scholar 

  28. Saadati-Eskandari, N., Navidpour, L., Yaghmaei, P., and Ebrahim-Habibi, A. (2019) Amino acids as additives against amorphous aggregation: in vitro and in silico study on human lysozyme, Appl. Biochem. Biotechnol., 189, 305-317, https://doi.org/10.1007/s12010-019-03010-4.

    Article  CAS  PubMed  Google Scholar 

  29. Haghighi-Poodeh, S., Kurganov, B., Navidpour, L., Yaghmaei, P., and Ebrahim-Habibi, A. (2020) Characterization of arginine preventive effect on heat-induced aggregation of insulin, Int. J. Biol. Macromol., 145, 1039-1048, https://doi.org/10.1016/j.ijbiomac.2019.09.196.

    Article  CAS  PubMed  Google Scholar 

  30. Shiraki, K., Kudou, M., Fujiwara, S., Imanaka, T., and Takagi, M. (2002) Biophysical effect of amino acids on the prevention of protein aggregation, J. Biochem., 132, 591-595, https://doi.org/10.1093/oxfordjournals.jbchem.a003261.

    Article  CAS  PubMed  Google Scholar 

  31. Arakawa, T., Dix, D. B., and Chang, B. S. (2003) The effects of protein stabilizers on aggregation induced by multiple-stresses, Yakugaku Zasshi., 123, 957-961, https://doi.org/10.1248/yakushi.123.957.

    Article  CAS  PubMed  Google Scholar 

  32. Rishi, V., Anjum, F., Ahmad, F., and Pfeil, W. (1998) Role of non-compatible osmolytes in the stabilization of proteins during heat stress, Biochem. J., 329 (Pt 1), 137-143, https://doi.org/10.1042/bj3290137.

    Article  PubMed  Google Scholar 

  33. Wang, X., Feng, T., Wang, X., Zhang, X., and Xi, S. (2021) Gelation and microstructural properties of fish myofibrillar protein gels with the incorporation of L-lysine and L-arginine at low ionic strength, J. Sci. Food Agric., 101, 5469-5477, https://doi.org/10.1002/jsfa.11195.

    Article  CAS  PubMed  Google Scholar 

  34. Smirnova, E., Safenkova, I., Stein-Margolina, B., Shubin, V., and Gurvits, B. (2013) L-arginine induces protein aggregation and transformation of supramolecular structures of the aggregates, Amino Acids, 45, 845-855, https://doi.org/10.1007/s00726-013-1528-7.

    Article  CAS  PubMed  Google Scholar 

  35. Barford, D., and Johnson, L. N. (1989) The allosteric transition of glycogen phosphorylase, Nature, 340, 609-616, https://doi.org/10.1038/340609a0.

    Article  CAS  PubMed  Google Scholar 

  36. Kurganov, B. I., Kornilaev, B. A., Chebotareva, N. A., Malikov, V. P., Orlov, V. N., et al. (2000) Dissociative mechanism of thermal denaturation of rabbit skeletal muscle glycogen phosphorylase b, Biochemistry, 39, 13144-13152, https://doi.org/10.1021/bi000975w.

    Article  CAS  PubMed  Google Scholar 

  37. Eronina, T. B., Mikhaylova, V. V., Chebotareva, N. A., and Kurganov, B. I. (2016) Kinetic regime of thermal aggregation of holo- and apoglycogen phosphorylases b, Int. J. Biol. Macromol., 92, 1252-1257, https://doi.org/10.1016/j.ijbiomac.2016.08.038.

    Article  CAS  PubMed  Google Scholar 

  38. Mikhaylova, V. V., Eronina, T. B., Chebotareva, N. A., Kleymenov, S. Y., Shubin, V. V., and Kurganov, B. I. (2017) A thermal after-effect of UV irradiation of muscle glycogen phosphorylase b, PLoS One, 12, e0189125, https://doi.org/10.1371/journal.pone.0189125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eronina, T. B., Mikhaylova, V. V., Chebotareva, N. A., Kleymenov, S. Y., Pivovarova, A. V., and Kurganov, B. I. (2022) Combined action of chemical chaperones on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b, Int. J. Biol. Macromol., 203, 406-416, https://doi.org/10.1016/j.ijbiomac.2022.01.106.

    Article  CAS  PubMed  Google Scholar 

  40. Eronina, T. B., Mikhaylova, V. V., Chebotareva, N. A., Tugaeva, K. V., and Kurganov, B. I. (2022) Effect of betaine and arginine on interaction of alphaB-crystallin with glycogen phosphorylase b, Int. J. Mol. Sci., 23, 3816, https://doi.org/10.3390/ijms23073816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shaltiel, S., Hedrick, J.L., and Fischer, E.H. (1966) On the role of pyridoxal 5′-phosphate in phosphorylase. II. Resolution of rabbit muscle phosphorylase b, Biochemistry, 5, 2108-2116, https://doi.org/10.1021/bi00870a044.

    Article  CAS  PubMed  Google Scholar 

  42. Mikhaylova, V. V., Eronina, T. B., Chebotareva, N. A., Shubin, V. V., Kalacheva, D. I., and Kurganov, B. I. (2020) Effect of arginine on chaperone-like activity of HspB6 and monomeric 14-3-3ζ, Int. J. Mol. Sci., 21, 2039, https://doi.org/10.3390/ijms21062039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khanova, H. A., Markossian, K. A., Kurganov, B. I., Samoilov, A. M., Kleimenov, S. Y., et al. (2005) Mechanism of chaperone-like activity. Suppression of thermal aggregation of betaL-crystallin by alpha-crystallin, Biochemistry, 44, 15480-15487, https://doi.org/10.1021/bi051175u.

    Article  CAS  PubMed  Google Scholar 

  44. Eronina, T. B., Mikhaylova, V. V., Chebotareva, N. A., Shubin, V. V., Kleymenov, S. Y., and Kurganov, B. I. (2020) Effect of arginine on stability and aggregation of muscle glycogen phosphorylase b, Int. J. Biol. Macromol., 165 (Pt A), 365-374, https://doi.org/10.1016/j.ijbiomac.2020.09.101.

    Article  CAS  Google Scholar 

  45. Brown, P. H., and Schuck, P. (2006) Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation, Biophys. J., 90, 4651-4661, https://doi.org/10.1529/biophysj.106.081372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kurganov, B. I. (2002) Estimation of the activity of molecular chaperones in test-systems based on suppression of protein aggregation, Usp. Biol. Khim., 42, 89-138.

    CAS  Google Scholar 

  47. Sharma, G. S., Krishna, S., Dar, T. A., Khan, K. A., and Singh, L. R. (2021) Protecting thermodynamic stability of protein: the basic paradigm against stress and unfolded protein response by osmolytes, Int. J. Biol. Macromol., 177, 229-240, https://doi.org/10.1016/j.ijbiomac.2021.02.102.

    Article  CAS  PubMed  Google Scholar 

  48. Hedrick, J. L., Shaltliel, S., and Fischer, E. H. (1966) On the role of pyridoxal 5′-phosphate in phosphorylase. 3. Physicochemical properties and reconstitution of apophosphorylase b, Biochemistry, 5, 2117-2125, https://doi.org/10.1021/bi00870a045.

    Article  CAS  PubMed  Google Scholar 

  49. Gunar, V. I., Sugrobova, N. P., Chebotareva, N. A., Stepanova, S. V., Poznanskaya, A. A., Kurganov, B. I. in Fukui, T., Kagamiyama, H., Soda, K., and Wada, H. (Eds) (1990) Enzymes Dependent on Pyridoxal Phosphate and Other Carbonyl Compounds as Cofactors, Pergamon Press, Oxford, pp. 417-419.

  50. Rydeen, A. E., Brustad, E. M., and Pielak, G. J. (2018) Osmolytes and protein–protein interactions, J. Am. Chem. Soc., 140, 7441-7444, https://doi.org/10.1021/jacs.8b03903.

    Article  CAS  PubMed  Google Scholar 

  51. Roman, S. G., Chebotareva, N. A., Eronina, T. B., Kleymenov, S. Y., Makeeva, V. F., et al. (2011) Does the crowded cell-like environment reduce the chaperone-like activity of alpha-crystallin? Biochemistry, 50, 10607-10623, https://doi.org/10.1021/bi201030y.

    Article  CAS  PubMed  Google Scholar 

  52. Su, Z., Mahmoudinobar, F., and Dias, C. L. (2017) Effects of trimethylamine-N-oxide on the conformation of peptides and its implications for proteins, Phys. Rev. Lett., 119, 108102, https://doi.org/10.1103/PhysRevLett.119.108102.

    Article  PubMed  Google Scholar 

  53. Mukherjee, M., and Mondal, J. (2020) Unifying the contrasting mechanisms of protein-stabilizing osmolytes, J. Phys. Chem. B, 124, 6565-6574, https://doi.org/10.1021/acs.jpcb.0c04757.

    Article  CAS  PubMed  Google Scholar 

  54. Felitsky, D. J., Cannon, J. G., Capp, M. W., Hong, J., Van Wynsberghe, A. W., et al. (2004) The exclusion of glycine betaine from anionic biopolymer surface: why glycine betaine is an effective osmoprotectant but also a compatible solute, Biochemistry, 43, 14732-14743, https://doi.org/10.1021/bi049115w.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of our supervisor, Prof. Boris Ivanovich Kurganov (1938-2021). B. I. Kurganov had devoted his scientific career to studying the structure and functions of allosteric enzymes, as well as the processes of their denaturation and aggregation. In recent years, his main area of interest has been the kinetics of protein aggregation and the influence of chemical and protein chaperones on it. B. I. Kurganov developed the approaches for establishing the mechanisms of protein aggregation in various test systems and methods for quantifying and comparing the anti-aggregation activity of chaperones of different nature. The studies carried out under the direction of B. I. Kurganov testify to the successful application of the proposed methods.

Funding

The work was supported by the Russian Science Foundation (project no. 16-14-10055 for V.V.M., T.B.E., N.A.C., B.I.K.) and by the Ministry of Science and Higher Education of the Russian Federation (for V.V.M., T.B.E., N.A.C.).

Author information

Authors and Affiliations

Authors

Contributions

B. I. Kurganov developed the study concept and curated the data; V. V. Mikhaylova, T. B. Eronina, and N. A. Chebotareva performed the experiments and analyzed the data; V. V. Mikhaylova, T. B. Eronina, N. A. Chebotareva, and B. I. Kurganov discussed the study results; V. V. Mikhaylova wrote the article; V. V. Mikhaylova, T. B. Eronina, and N. A. Chebotareva reviewed and edited the manuscript.

Corresponding author

Correspondence to Valeriya V. Mikhaylova.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhaylova, V.V., Eronina, T.B., Chebotareva, N.A. et al. The Effect of Chemical Chaperones on Proteins with Different Aggregation Kinetics. Biochemistry Moscow 88, 1–12 (2023). https://doi.org/10.1134/S0006297923010017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923010017

Keywords

Navigation