Skip to main content
Log in

SkQ1 as a Tool for Controlling Accelerated Senescence Program: Experiments with OXYS Rats

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

According to the concept suggested by V. P. Skulachev and co-authors, aging of living organisms can be considered as a special case of programmed death of an organism – phenoptosis, and mitochondrial antioxidant SkQ1 is capable of inhibiting both acute and chronic phenoptosis (aging). The authors of the concept associate effects of SkQ1 with suppression of the enhanced generation of ROS in mitochondria. Numerous studies have confirmed the ability of SkQ1 to inhibit manifestations of the “healthy”, or physiological, aging. According to the results of our studies, SkQ1 is especially effective in suppressing the program of genetically determined accelerated senescence in OXYS rats, which appears as an early development of a complex of age-related diseases: cataracts, retinopathy (similar to the age-related macular degeneration in humans), osteoporosis, and signs of Alzheimer’s disease. Accelerated senescence in OXYS rats is associated with mitochondrial dysfunction, but no direct associations with oxidative stress have been identified. Nevertheless, SkQ1 is able to prevent and/or suppress development of all manifestations of accelerated senescence in OXYS rats. Its effects are due to impact on the activity of many signaling pathways and processes, but first of all they are associated with restoration of the structural and functional parameters of mitochondria. It could be suggested that the use of SkQ1 could represent a promising strategy in prevention of accelerated phenoptosis – early development of a complex of age-related diseases (multimorbidity) in people predisposed to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aβ:

amyloid beta

AD:

Alzheimer disease

AMD:

age-related macular degeneration

GH:

growth hormone

MAPK:

mitogen-activated protein kinases

ROS:

reactive oxygen species

SkQ1:

plastoquinonyl decyl triphenylphosphonium

VEGF:

vascular endothelial growth factor

References

  1. Skulachev, V. P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689-706, https://doi.org/10.1134/S0006297912070012.

    Article  CAS  Google Scholar 

  2. Skulachev, M. V., and Skulachev, V. P. (2017) Programmed aging of mammals: proof of concept and prospects of biochemical approaches for anti-aging therapy, Biochemistry (Moscow), 82, 1403-1422, https://doi.org/10.1134/S000629791712001X.

    Article  CAS  Google Scholar 

  3. Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., et al. (2017) Neoteny, prolongation of youth: from naked mole rats to “Naked Apes” (humans), Physiol. Rev., 97, 699-720, https://doi.org/10.1152/physrev.00040.2015.

    Article  Google Scholar 

  4. Figueira, I., Fernandes, A., Mladenovic Djordjevic, A., Lopez-Contreras, A., Henriques, C. M., et al. (2016) Interventions for age-related diseases: shifting the paradigm, Mech. Ageing Dev., 160, 69-92, https://doi.org/10.1016/j.mad.2016.09.009.

    Article  Google Scholar 

  5. Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., Fursova, A. Zh., and Kozhevnikova, O. S. (2014) Senescence-accelerated OXYS rats: A genetic model of premature aging and age-related diseases, Adv. Gerontol., 4, 294-298, https://doi.org/10.1134/S2079057014040146.

    Article  Google Scholar 

  6. Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., et al. (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer’s disease, Cell Cycle, 13, 898-909, https://doi.org/10.4161/cc.28255.

    Article  CAS  Google Scholar 

  7. Stefanova, N. A., Muraleva, N. A., Korbolina, E. E., Kiseleva, E., Maksimova, K. Y., et al. (2015) Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 6, 1396-1413, https://doi.org/10.18632/oncotarget.2751.

    Article  Google Scholar 

  8. Muraleva, N. A., Devyatkin, V. A., and Kolosova, N. G. (2017) Phosphorylation of αB-crystallin in the myocardium: analysis of relations with aging and cardiomyopathy, Exp. Gerontol., 95, 26-33, https://doi.org/10.1016/j.exger.2017.05.009.

    Article  CAS  Google Scholar 

  9. Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009) Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats, Aging, 1, 389-401, https://doi.org/10.18632/aging.100043.

    Article  CAS  Google Scholar 

  10. Zhdankina, A. A., Fursova, A., Logvinov, S. V., and Kolosova, N. G. (2008) Clinical and morphological characteristics of chorioretinal degeneration in early aging OXYS rats, Bull. Exp. Biol. Med., 146, 455-458, https://doi.org/10.1007/s10517-009-0298-4.

    Article  CAS  Google Scholar 

  11. Kozhevnikova, O. S., Korbolina, E. E., Ershov, N. I., and Kolosova, N. G. (2013) Rat retinal transcriptome: effects of aging and AMD-like retinopathy, Cell Cycle, 12, 1745-1761, https://doi.org/10.4161/cc.24825.

    Article  CAS  Google Scholar 

  12. Muraleva, N. A., Ofitserov, E. N., Tikhonov, V. P., and Kolosova, N. G. (2012) Efficacy of glucosamine alendronate alone and in combination with dihydroquercetin for treatment of osteoporosis in animal model, Ind. J. Med. Res., 135, 221-227.

    CAS  Google Scholar 

  13. Vays, V. B., Eldarov, C. M., Vangely, I. M., Kolosova, N. G., Bakeeva, L. E., et al. (2014) Antioxidant SkQ1 delays sarcopenia-associated damage of mitochondrial ultrastructure, Aging, 6, 140-148, https://doi.org/10.18632/aging.100636.

    Article  Google Scholar 

  14. Kolosova, N. G., Shcheglova, T. V., Sergeeva, S. V., and Loskutova, L. V. (2006) Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated OXYS rats, Neurobiol. Aging, 27, 1289-1297, https://doi.org/10.1016/j.neurobiolaging.2005.07.022.

    Article  CAS  Google Scholar 

  15. Kolosova, N. G., Aidagulova, S. V., Nepomnyashchikh, G. I., Shabalina, I. G., and Shalbueva, N. I. (2001) Dynamics of structural and functional changes in hepatocyte mitochondria of senescence-accelerated OXYS rats, Bull. Exp. Biol. Med., 132, 814-819, https://doi.org/10.1023/a:1013014919721.

    Article  CAS  Google Scholar 

  16. El'darov, C., Vays, V. B., Vangeli, I. M., Kolosova, N. G., and Bakeeva, L. E. (2015) Morphometric examination of mitochondrial ultrastructure in aging cardiomyocytes, Biochemistry (Moscow), 80, 604-609, https://doi.org/10.1134/S0006297915050132.

    Article  CAS  Google Scholar 

  17. Tyumentsev, M. A., Stefanova, N. A., Muraleva, N. A., Rumyantseva, Y. V., Kiseleva, E., et al. (2018) Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats, J. Alzheimer’s Dis., 63, 1075-1088, https://doi.org/10.3233/JAD-180065.

    Article  CAS  Google Scholar 

  18. Telegina, D. V., Korbolina, E. E., Ershov, N. I., Kolosova, N. G., and Kozhevnikova, O. S. (2015) Identification of functional networks associated with cell death in the retina of OXYS rats during the development of retinopathy, Cell Cycle, 14, 3544-3556, https://doi.org/10.1080/15384101.2015.1080399.

    Article  CAS  Google Scholar 

  19. Stefanova, N. A., Ershov, N. I., Maksimova, K. Y., Muraleva, N. A., Tyumentsev, M. A., et al. (2019) The rat prefrontal-cortex transcriptome: effects of aging and sporadic Alzheimer’s disease-like pathology, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 74, 33-43, https://doi.org/10.1093/gerona/gly198.

    Article  CAS  Google Scholar 

  20. Stefanova, N. A., Ershov, N. I., and Kolosova, N. G. (2019) Suppression of Alzheimer’s disease-like pathology progression by mitochondria-targeted antioxidant SkQ1: a transcriptome profiling study, Oxid. Med. Cell. Longev., 2019, 3984906, https://doi.org/10.1155/2019/3984906.

    Article  CAS  Google Scholar 

  21. Harman D. (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009, Biogerontology, 10, 773-781, https://doi.org/10.1007/s10522-009-9234-2.

    Article  CAS  Google Scholar 

  22. Payne, B. A., and Chinnery, P. F. (2015) Mitochondrial dysfunction in aging: much progress but many unresolved questions, Biochim. Biophys. Acta, 1847, 1347-1353, https://doi.org/10.1016/j.bbabio.2015.05.022.

    Article  CAS  Google Scholar 

  23. Ristow, M., and Schmeisser, K. (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS), Dose Response, 12, 288-341, https://doi.org/10.2203/dose-response.13-035.Ristow.

    Article  CAS  Google Scholar 

  24. Correia-Melo, C., and Passos, J. F. (2015) Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta, 1847, 1373-1379, https://doi.org/10.1016/j.bbabio.2015.05.017.

    Article  CAS  Google Scholar 

  25. Gonzalez-Freire, M., de Cabo, R., Bernier, M., Sollott, S. J., Fabbri, E., et al. (2015) Reconsidering the role of mitochondria in aging, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 70, 1334-1342, https://doi.org/10.1093/gerona/glv070.

    Article  CAS  Google Scholar 

  26. Ziegler, D. V., Wiley, C. D., and Velarde, M. C. (2015) Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging, Aging Cell, 14, 1-7, https://doi.org/10.1111/acel.12287.

    Article  CAS  Google Scholar 

  27. Tong, Y., Zhang, Z., and Wang, S. (2022) Role of mitochondria in retinal pigment epithelial aging and degeneration, Front. Aging, 3, 926627, https://doi.org/10.3389/fragi.2022.926627.

    Article  Google Scholar 

  28. Devyatkin, V. A., Redina, O. E., Kolosova, N. G., and Muraleva, N. A. (2020) Single-nucleotide polymorphisms associated with the senescence-accelerated phenotype of OXYS rats: a focus on Alzheimer’s disease-like and age-related-macular-degeneration-like pathologies, J. Alzheimer’s Dis., 73, 1167-1183, https://doi.org/10.3233/JAD-190956.

    Article  Google Scholar 

  29. Devyatkin, V. A., Muraleva, N. A., and Kolosova, N. G. (2020) Identification of single-nucleotide polymorphisms in mitochondria-associated genes capable of affecting the development of hypertrophic cardiomyopathy in senescence-accelerated OXYS rats, Adv. Gerontol., 10, 121-127, https://doi.org/10.1134/S2079057020020058.

    Article  Google Scholar 

  30. Liang, Z., Dong, X., Zhang, Z., Zhang, Q., and Zhao, Y. (2022) Age-related thymic involution: Mechanisms and functional impact, Aging Cell, 21, e13671, https://doi.org/10.1111/acel.13671.

    Article  CAS  Google Scholar 

  31. Caputo, M., Pigni, S., Agosti, E., Daffara, T., Ferrero, A., et al. (2021) Regulation of GH and GH signaling by nutrients, Cells, 10, 1376, https://doi.org/10.3390/cells10061376.

    Article  CAS  Google Scholar 

  32. Bartke, A., Sun, L. Y., and Longo, V. (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity, Physiol. Rev., 93, 571-598, https://doi.org/10.1152/physrev.00006.2012.

    Article  CAS  Google Scholar 

  33. Kolosova, N. G., Stefanova, N. A., Muraleva, N. A., and Skulachev, V. P. (2012) The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats, Aging, 4, 686-694, https://doi.org/10.18632/aging.100493.

    Article  CAS  Google Scholar 

  34. Sáez, J. M. (2012) Possible usefulness of growth hormone/insulin-like growth factor-I axis in Alzheimer’s disease treatment, Endocr. Metab. Immune Disord. Drug Targets, 12, 274-286, https://doi.org/10.2174/187153012802002857.

    Article  Google Scholar 

  35. Rumyantseva, Yu. V., Fursova, A. Zh., Ryabchikova, E. I., and Kolosova, N. G. (2014) Development of cataract in the ontogeny of senescence-accelerated OXYS rats, the basic selection trait of this strain, Uspekhi gerontologii, 27, 637-644.

    Google Scholar 

  36. Kolosova, N. G., Lebedev, P. A., Aidagulova, S. V., and Morozkova, T. S. (2003) OXYS rats as a model of senile cataract, Bull. Exp. Biol. Med., 136, 415-419, https://doi.org/10.1023/b:bebm.0000010967.24302.78.

    Article  CAS  Google Scholar 

  37. Rumyantseva, Y. V., Fursova, A., Fedoseeva, L. A., and Kolosova, N. G. (2008) Changes in physicochemical parameters and alpha-crystallin expression in the lens during cataract development in OXYS rats, Biochemistry (Moscow), 73, 1176-1182, https://doi.org/10.1134/s0006297908110023.

    Article  CAS  Google Scholar 

  38. Rumyantseva, Y. V., Ryabchikova, E. I., Fursova, A. Z., and Kolosova, N. G. (2015) Ameliorative effects of SkQ1 eye drops on cataractogenesis in senescence-accelerated OXYS rats, Graefe’s Arch. Clin. Exp. Ophthalmol., 253, 237-248, https://doi.org/10.1007/s00417-014-2806-0.

    Article  CAS  Google Scholar 

  39. Snytnikova, O. A., Tsentalovich, Y. P., Stefanova, N. A., Fursova, A., Kaptein, R., et al. (2012) The therapeutic effect of mitochondria-targeted antioxidant SkQ1 and Cistanche deserticola is associated with increased levels of tryptophan and kynurenine in the rat lens, Doklady. Biochem. Biophys., 447, 300-303, https://doi.org/10.1134/S1607672912060087.

    Article  CAS  Google Scholar 

  40. Demarais, N. J., Donaldson, P. J., and Grey, A. C. (2019) Age-related spatial differences of human lens UV filters revealed by negative ion mode MALDI imaging mass spectrometry, Exp. Eye Res., 184, 146-151, https://doi.org/10.1016/j.exer.2019.04.016.

    Article  CAS  Google Scholar 

  41. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., Grishanova, A. Y., et al. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317-1328, https://doi.org/10.1134/s0006297908120043.

    Article  CAS  Google Scholar 

  42. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., et al. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437-461, https://doi.org/10.1016/j.bbabio.2008.12.008.

    Article  CAS  Google Scholar 

  43. Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., et al. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800-826, https://doi.org/10.2174/138945011795528859.

    Article  CAS  Google Scholar 

  44. Petrov, A., Perekhvatova, N., Skulachev, M., Stein, L., and Ousler, G. (2016) SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model, Adv. Ther., 33, 96-115, https://doi.org/10.1007/s12325-015-0274-5.

    Article  CAS  Google Scholar 

  45. Blasiak, J., Sobczuk, P., Pawlowska, E., and Kaarniranta, K. (2022) Interplay between aging and other factors of the pathogenesis of age-related macular degeneration, Ageing Res. Rev., 81, 101735, https://doi.org/10.1016/j.arr.2022.101735.

    Article  CAS  Google Scholar 

  46. Jager, R. D., Mieler, W. F., and Miller, J. W. (2008) Age-related macular degeneration, New Engl. J. Med., 358, 2606-2617, https://doi.org/10.1056/NEJMra0801537.

    Article  CAS  Google Scholar 

  47. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin, D. F., Maguire, M. G., Fine, S. L., Ying, G. S., Jaffe, G. J., et al. (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results, Ophthalmology, 119, 1388-1398, https://doi.org/10.1016/j.ophtha.2012.03.053.

    Article  Google Scholar 

  48. Camelo, S., Latil, M., Veillet, S., Dilda, P. J., and Lafont, R. (2020) Beyond AREDS formulations, what is next for intermediate age-related macular degeneration (iAMD) treatment? Potential benefits of antioxidant and anti-inflammatory apocarotenoids as neuroprotectors, Oxid. Med. Cell. Longev, 2020, 4984927, https://doi.org/10.1155/2020/4984927.

    Article  CAS  Google Scholar 

  49. Wang, S., and Tang, Y. J. (2021) Sulforaphane ameliorates amyloid-β-induced inflammatory injury by suppressing the PARP1/SIRT1 pathway in retinal pigment epithelial cells, Bioengineered, 12, 7079-7089, https://doi.org/10.1080/21655979.2021.1976503.

    Article  CAS  Google Scholar 

  50. Kolosova, N. G., Muraleva, N. A., Zhdankina, A. A., Stefanova, N. A., Fursova, A. Z., et al. (2012) Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats, Am. J. Pathol., 181, 472-477, https://doi.org/10.1016/j.ajpath.2012.04.018.

    Article  CAS  Google Scholar 

  51. Telegina, D. V., Kozhevnikova, O. S., Bayborodin, S. I., and Kolosova, N. G. (2017) Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats, Sci. Rep., 7, 41533, https://doi.org/10.1038/srep41533.

    Article  CAS  Google Scholar 

  52. Telegina, D. V., Kozhevnikova, O. S., Fursova, A. Z., and Kolosova, N. G. (2020) Autophagy as a target for the retinoprotective effects of the mitochondria-targeted antioxidant SkQ1, Biochemistry (Moscow), 85, 1640-1649, https://doi.org/10.1134/S0006297920120159.

    Article  CAS  Google Scholar 

  53. Telegina, D. V., Kolosova, N. G., and Kozhevnikova, O. S. (2019) Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina, BMC Med. Genomics, 12 (Suppl 2), 48, https://doi.org/10.1186/s12920-019-0493-8.

    Article  CAS  Google Scholar 

  54. Kozhevnikova, O. S., Telegina, D. V., Tyumentsev, M. A., and Kolosova, N. G. (2019) Disruptions of autophagy in the rat retina with age during the development of age-related-macular-degeneration-like retinopathy, Int. J. Mol. Sci., 20, 4804, https://doi.org/10.3390/ijms20194804.

    Article  CAS  Google Scholar 

  55. Telegina, D. V., Antonenko, A. K., Fursova, A. Z., and Kolosova, N. G. (2022) The glutamate/GABA system in the retina of male rats: effects of aging, neurodegeneration, and supplementation with melatonin and antioxidant SkQ1, Biogerontology, 23, 571-585, https://doi.org/10.1007/s10522-022-09983-w.

    Article  CAS  Google Scholar 

  56. Kozhevnikova, O. S., Telegina, D. V., Devyatkin, V. A., and Kolosova, N. G. (2018) Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats, Biogerontology, 19, 223-235, https://doi.org/10.1007/s10522-018-9751-y.

    Article  CAS  Google Scholar 

  57. Muraleva, N. A., Kozhevnikova, O. S., Zhdankina, A. A., Stefanova, N. A., Karamysheva, T. V., et al. (2014) The mitochondria-targeted antioxidant SkQ1 restores αB-crystallin expression and protects against AMD-like retinopathy in OXYS rats, Cell Cycle, 13, 3499-3505, https://doi.org/10.4161/15384101.2014.958393.

    Article  CAS  Google Scholar 

  58. Markovets, A. M., Fursova, A. Z., and Kolosova, N. G. (2011) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression, PLoS One, 6, e21682, https://doi.org/10.1371/journal.pone.0021682.

    Article  CAS  Google Scholar 

  59. Saprunova, V. B., Pilipenko, D. I., Alexeevsky, A. V., Fursova, A., Kolosova, N. G., et al. (2010) Lipofuscin granule dynamics during development of age-related macular degeneration, Biochemistry (Moscow), 75, 130-138, https://doi.org/10.1134/s0006297910020021.

    Article  CAS  Google Scholar 

  60. Saprunova, V. B., Lelekova, M. A., Kolosova, N. G., and Bakeeva, L. E. (2012) SkQ1 slows development of age-dependent destructive processes in retina and vascular layer of eyes of wistar and OXYS rats, Biochemistry (Moscow), 77, 648-658, https://doi.org/10.1134/S0006297912060120.

    Article  CAS  Google Scholar 

  61. Muraleva, N. A., Kozhevnikova, O. S., Fursova, A. Z., and Kolosova, N. G. (2019) Suppression of AMD-like pathology by mitochondria-targeted antioxidant SkQ1 is associated with a decrease in the accumulation of amyloid β and in mTOR activity, Antioxidants, 8, 177, https://doi.org/10.3390/antiox8060177.

    Article  CAS  Google Scholar 

  62. Papadopoli, D., Boulay, K., Kazak, L., Pollak, M., Mallette, F., et al. (2019) mTOR as a central regulator of lifespan and aging, F1000Research, 8, 998, https://doi.org/10.12688/f1000research.17196.1.

    Article  CAS  Google Scholar 

  63. Swerdlow, R. H., and Khan, S. M. (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses, 63, 8-20, https://doi.org/10.1016/j.mehy.2003.12.045.

    Article  CAS  Google Scholar 

  64. Stefanova, N. A., Muraleva, N. A., Maksimova, K. Y., Rudnitskaya, E. A., Kiseleva, E., et al. (2016) An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology, Aging, 8, 2713-2733, https://doi.org/10.18632/aging.101054.

    Article  CAS  Google Scholar 

  65. Kolosova, N. G., Tyumentsev, M. A., Muraleva, N. A., Kiseleva, E., Vitovtov, A. O., et al. (2017) Antioxidant SkQ1 alleviates signs of Alzheimer’s disease-like pathology in old OXYS rats by reversing mitochondrial deterioration, Curr. Alzheimer’s Res., 14, 1283-1292, https://doi.org/10.2174/1567205014666170621111033.

    Article  CAS  Google Scholar 

  66. Bakeeva, L. E., Eldarov, C. M., Vangely, I. M., Kolosova, N. G., and Vays, V. B. (2016) Mitochondria-targeted antioxidant SkQ1 reduces age-related alterations in the ultrastructure of the lacrimal gland, Oncotarget, 7, 80208-80222, https://doi.org/10.18632/oncotarget.13303.

    Article  Google Scholar 

  67. Guo, Y. J., Pan, W. W., Liu, S. B., Shen, Z. F., Xu, Y., et al. (2020) ERK/MAPK signalling pathway and tumorigenesis, Exp. Ther. Med., 19, 1997-2007, https://doi.org/10.3892/etm.2020.8454.

    Article  CAS  Google Scholar 

  68. Dhapola, R., Hota, S. S., Sarma, P., Bhattacharyya, A., Medhi, B., et al. (2021) Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease, Inflammopharmacology, 29, 1669-1681, https://doi.org/10.1007/s10787-021-00889-6.

    Article  CAS  Google Scholar 

  69. Thakur, S., Dhapola, R., Sarma, P., Medhi, B., and Reddy, D. H. (2022) Neuroinflammation in Alzheimer’s disease: current progress in molecular signaling and therapeutics, Inflammation, https://doi.org/10.1007/s10753-022-01721-1.

    Article  Google Scholar 

  70. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2019) p38 MAPK-dependent alphaB-crystallin phosphorylation in Alzheimer's disease-like pathology in OXYS rats, Exp. Gerontol., 119, 45-52, https://doi.org/10.1016/j.exger.2019.01.017.

    Article  CAS  Google Scholar 

  71. Muraleva, N. A., Stefanova, N. A., and Kolosova, N. G. (2020) SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer’s disease-like pathology in OXYS rats, Antioxidants, 9, 676, https://doi.org/10.3390/antiox9080676.

    Article  CAS  Google Scholar 

  72. Khezri, M. R., Yousefi, K., Esmaeili, A., and Ghasemnejad-Berenji, M. (2022) The role of ERK1/2 pathway in the pathophysiology of Alzheimer’s disease: an overview and update on new developments, Cell. Mol. Neurobiol., https://doi.org/10.1007/s10571-022-01191-x.

    Article  Google Scholar 

  73. Iroegbu, J. D., Ijomone, O. K., Femi-Akinlosotu, O. M., and Ijomone, O. M. (2021) ERK/MAPK signalling in the developing brain: perturbations and consequences, Neurosci. Biobehavioral Rev., 131, 792-805, https://doi.org/10.1016/j.neubiorev.2021.10.009.

    Article  CAS  Google Scholar 

  74. Kamat, P. K., Kalani, A., Rai, S., Swarnkar, S., Tota, S., et al. (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies, Mol. Neurobiol., 53, 648-661, https://doi.org/10.1007/s12035-014-9053-6.

    Article  CAS  Google Scholar 

  75. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2021) MEK1/2-ERK pathway alterations as a therapeutic target in sporadic Alzheimer’s disease: a study in senescence-accelerated OXYS rats, Antioxidants, 10, 1058, https://doi.org/10.3390/antiox10071058.

    Article  CAS  Google Scholar 

  76. Soreq, L., UK Brain Expression Consortium, North American Brain Expression Consortium, Rose, J., Soreq, E., Hardy, J., Trabzuni, D., Cookson, M. R., et al. (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging, Cell Rep., 18, 557-570, https://doi.org/10.1016/j.celrep.2016.12.011.

    Article  CAS  Google Scholar 

  77. Salas, I. H., Burgado, J., and Allen, N. J. (2020) Glia: victims or villains of the aging brain? Neurobiol. Disease, 143, 105008, https://doi.org/10.1016/j.nbd.2020.105008.

    Article  Google Scholar 

  78. Uddin, M. S., and Lim, L. W. (2022) Glial cells in Alzheimer’s disease: from neuropathological changes to therapeutic implications, Ageing Res. Rev., 78, 101622, https://doi.org/10.1016/j.arr.2022.101622.

    Article  CAS  Google Scholar 

  79. Rudnitskaya, E. A., Kozlova, T. A., Burnyasheva, A. O., Kolosova, N. G., and Stefanova, N. A. (2019) Alterations of hippocampal neurogenesis during development of Alzheimer’s disease-like pathology in OXYS rats, Exp. Gerontol., 115, 32-45, https://doi.org/10.1016/j.exger.2018.11.008.

    Article  CAS  Google Scholar 

  80. Rudnitskaya, E. A., Kozlova, T. A., Burnyasheva, A. O., Tarasova, A. E., Pankova, T. M., et al. (2020) Features of postnatal hippocampal development in a rat model of sporadic Alzheimer’s disease, Front. Neurosci., 14, 533, https://doi.org/10.3389/fnins.2020.00533.

    Article  Google Scholar 

  81. Rudnitskaya, E. A., Burnyasheva, A. O., Kozlova, T. A., Peunov, D. A., Kolosova, N. G., et al. (2022) Changes in glial support of the hippocampus during the development of an Alzheimer’s disease-like pathology and their correction by mitochondria-targeted antioxidant SkQ1, Int. J. Mol. Sci., 23, 1134, https://doi.org/10.3390/ijms23031134.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the State Budget project FWNR-2022-0016.

Author information

Authors and Affiliations

Authors

Contributions

N. G. Kolosova – concept of the study, supervision of work, preparation of the review; all other authors – equal contribution to investigation of the processes of accelerated aging in OXYS rats and effects of SkQ1 on them.

Corresponding author

Correspondence to Nataliya G. Kolosova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolosova, N.G., Kozhevnikova, O.S., Muraleva, N.A. et al. SkQ1 as a Tool for Controlling Accelerated Senescence Program: Experiments with OXYS Rats. Biochemistry Moscow 87, 1552–1562 (2022). https://doi.org/10.1134/S0006297922120124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922120124

Keywords

Navigation