Skip to main content
Log in

Molecular Mechanisms of the Neuroprotective Effect of Methylene Blue

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Methylene blue (MB) is the first fully synthetic compound that had found its way into medicine over 120 years ago as a treatment against malaria. MB has been approved for the treatment of methemoglobinemia, but there are premises for its repurposing as a neuroprotective agent based on the efficacy of this compound demonstrated in the models of Alzheimer’s, Parkinson’s, and Huntington’s diseases, traumatic brain injury, amyotrophic lateral sclerosis, depressive disorders, etc. However, the goal of this review was not so much to focus on the therapeutic effects of MB in the treatment of various neurodegeneration diseases, but to delve into the mechanisms of direct or indirect effect of this drug on the signaling pathways. MB can act as an alternative electron carrier in the mitochondrial respiratory chain in the case of dysfunctional electron transport chain. It also displays the anti-inflammatory and anti-apoptotic effects, inhibits monoamine oxidase (MAO) and nitric oxide synthase (NOS), activates signaling pathways involved in the mitochondrial pool renewal (mitochondrial biogenesis and autophagy), and prevents aggregation of misfolded proteins. Comprehensive understanding of all aspects of direct and indirect influence of MB, and not just some of its effects, can help in further research of this compound, including its clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

ARE:

antioxidant response element

cGMP:

cyclic guanosine monophosphate

CRH:

corticotropin-releasing hormone

ETC:

electron transport chain

GSK3β:

glycogen synthase kinase-3 beta

HTT:

huntingtin

Keap1:

Kelch-like ECH-associated protein 1

MAO:

monoamine oxidase

MB:

methylene blue

mTORC1:

mammalian target of rapamycin complex 1

NF-κB:

nuclear factor kappa-B

NOS:

nitric oxide synthase

Nrf2:

nuclear factor erythroid 2-related factor 2

PGC-1α:

peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PI3K:

phosphoinositide 3-kinase

PMCA:

plasma membrane Ca2+-ATPase

ROS:

reactive oxygen species

sGC:

soluble guanylate cyclase

SOD1:

superoxide dismutase 1

STAT:

signal transducer and transcription activator

TNF-α:

tumor necrosis factor

References

  1. O’Neil, M. J. (2013) The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, Cambridge, UK, Royal Society of Chemistry, England.

  2. Deutsches Reich Patent no. 1886, December 15, 1877 Badische Anilin- und Sodafabrik [BASF] (Mannheim, Germany), “Verfahren zur Darstellung blauer Farbstoffe aus Dimethylanilin und anderen tertiaren aromatischen Monaminen” (Method for preparation of blue dyes from dimethylaniline and other tertiary aromatic monoamines), Deutsches Reich Patent no. 1886 (December 15, 1877).

  3. Berneth, H. (2008) Azine dyes. In: Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany.

  4. Delport, A., Harvey, B. H., Petzer, A., and Petzer, J. P. (2017) The monoamine oxidase inhibition properties of selected structural analogues of methylene blue, Toxicol. Appl. Pharmacol., 325, 1-8, https://doi.org/10.1016/j.taap.2017.03.026.

    Article  CAS  PubMed  Google Scholar 

  5. Gaudette, N. F., and Lodge, J. W. (2005) Determination of methylene blue and leucomethylene blue in male and female Fischer 344 rat urine and B6C3F1 mouse urine, J. Anal. Toxicol., 29, 28-33, https://doi.org/10.1093/jat/29.1.28.

    Article  CAS  PubMed  Google Scholar 

  6. Schirmer, R. H., Adler, H., Pickhardt, M., and Mandelkow, E. (2011) “Lest we forget you – methylene blue...”, Neurobiol. Aging, 32, 2325.e7-2325.e2.325E16, https://doi.org/10.1016/j.neurobiolaging.2010.12.012.

    Article  CAS  Google Scholar 

  7. Ehrlich, P., and Leppmann, A., (1890) Ueber schmerzstillende Wirkung des Methylenblau, Dtsch. Med. Wochenschr., 16, 493-494.

    Article  Google Scholar 

  8. Bodoni, P. (1899) Dell’azione sedativa del bleu di metilene in varie forme di psicosi [in Italian], Clin. Med. Ital., pp. 217-222.

  9. Ohlow, M. J., and Moosmann, B. (2011) Phenothiazine: the seven lives of pharmacology's first lead structure, Drug Discov. Today, 16, 119-131, https://doi.org/10.1016/j.drudis.2011.01.001.

    Article  CAS  PubMed  Google Scholar 

  10. Allexsaht, W. J. (1938) The use of methylene blue in the treatment of catatonic dementia praecox patients, Psychiatric Quarterly, 12, 245-252.

    Article  Google Scholar 

  11. Kajdi, L., and Taylor, C. V. (1938) The use of intravenous methylene blue in status convulsivus, Am. J. Insanity, 94, 1369-1376, https://doi.org/10.1176/ajp.94.6.1369.

    Article  Google Scholar 

  12. Naylor, G. J., and Smith, A. H. (1981) Vanadium: a possible aetiological factor in manic depressive illness, Psychol. Med., 11, 249-256, https://doi.org/10.1017/s0033291700052065.

    Article  CAS  PubMed  Google Scholar 

  13. Naylor, G. J., Martin, B., Hopwood, S. E., and Watson, Y. (1986) A two-year double-blind crossover trial of the prophylactic effect of methylene blue in manic depressive psychosis, Biol. Psychiatry, 21, 915-920, https://doi.org/10.1016/0006-3223(86)90265-9.

    Article  CAS  PubMed  Google Scholar 

  14. Martinez, J. L., Jensen, R. A., Vasquez, B. J., McGuinness, T., and McGaugh, J. L. (1978) Methylene blue alters retention of inhibitory avoidance responses, Psychobiology, 6, 387-390, https://doi.org/10.3758/BF03326744.

    Article  CAS  Google Scholar 

  15. Wischik, C. M., Edwards, P. C., Lai, R. Y., Roth, M., and Harrington, C. R. (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines, Proc. Natl. Acad. Sci. USA, 93, 11213-11218, https://doi.org/10.1073/pnas.93.20.11213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wischik, C. M., Staff, R. T., Wischik, D. J., Bentham, P., Murray, A. D., et al. (2015) Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease, J. Alzheimer’s Dis., 44, 705-720, https://doi.org/10.3233/JAD-142874.

    Article  CAS  Google Scholar 

  17. Gauthier, S., Feldman, H. H., Schneider, L. S., Wilcock, G. K., Frisoni, G. B., et al. (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial, Lancet, 388, 2873-2884, https://doi.org/10.1016/S0140-6736(16)31275-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hashweh, N. N., Bartochowski, Z., Khoury, R., and Grossberg, G. T. (2020) An evaluation of hydromethylthionine as a treatment option for Alzheimer’s disease, Expert Opin. Pharmacother., 21, 619-627, https://doi.org/10.1080/14656566.2020.1719066.

    Article  CAS  PubMed  Google Scholar 

  19. Sontag, E. M., Lotz, G. P., Agrawal, N., Tran, A., Aron, R., et al. (2012) Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington’s disease models, J. Neurosci., 32, 11109-11119, https://doi.org/10.1523/JNEUROSCI.0895-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heidari, R., Monnier, V., Martin, E., and Tricoire, H. (2015) Methylene blue partially rescues heart defects in a drosophila model of Huntington’s disease, J. Huntington’s Dis., 4, 173-186, https://doi.org/10.3233/JHD-140130.

    Article  CAS  Google Scholar 

  21. Bariotto-Dos-Santos, K., Padovan-Neto, F. E., Bortolanza, M., Dos-Santos-Pereira, M., Raisman-Vozari, R., et al. (2019) Repurposing an established drug: an emerging role for methylene blue in L-DOPA-induced dyskinesia, Eur. J. Neurosci., 49, 869-882, https://doi.org/10.1111/ejn.14079.

    Article  PubMed  Google Scholar 

  22. Bhurtel, S., Katila, N., Neupane, S., Srivastav, S., Park, P. H., et al. (2018) Methylene blue protects dopaminergic neurons against MPTP-induced neurotoxicity by upregulating brain-derived neurotrophic factor, Ann. NY Acad. Sci., 1431, 58-71, https://doi.org/10.1111/nyas.13870.

    Article  CAS  PubMed  Google Scholar 

  23. Stelmashook, E. V., Genrikhs, E. E., Mukhaleva, E. V., Kapkaeva, M. R., Kondratenko, R. V., et al. (2019) Neuroprotective effects of methylene blue in vivo and in vitro, Bull. Exp. Biol. Med., 167, 455-459, https://doi.org/10.1007/s10517-019-04548-3.

    Article  CAS  PubMed  Google Scholar 

  24. Genrikhs, E. E., Stelmashook, E. V., Voronkov, D. N., Novikova, S. V., Alexandrova, O. P., et al. (2020) The delayed neuroprotective effect of methylene blue in experimental rat brain trauma, Antioxidants, 9, 377, https://doi.org/10.3390/antiox9050377.

    Article  CAS  PubMed Central  Google Scholar 

  25. Genrikhs, E. E., Stelmashook, E. V., Voronkov, D. N., Novikova, S. V., Alexandrova, O. P., et al. (2020) The single intravenous administration of methylene blue after traumatic brain injury diminishes neurological deficit, blood-brain barrier disruption and decrease in the expression of S100 protein in rats, Brain Res., 1740, 146854, https://doi.org/10.1016/j.brainres.2020.146854.

    Article  CAS  PubMed  Google Scholar 

  26. Lu, Q., Tucker, D., Dong, Y., Zhao, N., and Zhang, Q. (2016) Neuroprotective and functional improvement effects of methylene blue in global cerebral ischemia, Mol. Neurobiol., 53, 5344-5355, https://doi.org/10.1007/s12035-015-9455-0.

    Article  CAS  PubMed  Google Scholar 

  27. Li, L., Yang, R., Li, P., Lu, H., Hao, J., et al. (2018) Combination treatment with methylene blue and hypothermia in global cerebral ischemia, Mol. Neurobiol., 55, 2042-2055, https://doi.org/10.1007/s12035-017-0470-1.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Z. H., Wang, S. Y., Chen, L. L., Zhuang, J. Y., Ke, Q. F., et al. (2017) Methylene blue mitigates acute neuroinflammation after spinal cord injury through inhibiting NLRP3 inflammasome activation in microglia, Front. Cell Neurosci., 11, 391, https://doi.org/10.3389/fncel.2017.00391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dibaj, P., Zschüntzsch, J., Steffens, H., Scheffel, J., Göricke, B., et al. (2012) Influence of methylene blue on microglia-induced inflammation and motor neuron degeneration in the SOD1(G93A) model for ALS, PLoS One, 7, e43963, https://doi.org/10.1371/journal.pone.0043963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeevalk, G. D., Bernard, L. P., Song, C., Gluck, M., and Ehrhart, J. (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration, Antioxid. Redox Signal., 7, 1117-1139, https://doi.org/10.1089/ars.2005.7.1117.

    Article  CAS  PubMed  Google Scholar 

  31. Andreyev, A. Y., Kushnareva, Y. E., and Starkov, A. A. (2005) Mitochondrial metabolism of reactive oxygen species, Biochemistry (Moscow), 70, 200-214, https://doi.org/10.1007/s10541-005-0102-7.

    Article  CAS  Google Scholar 

  32. Eubel, H., Heinemeyer, J., Sunderhaus, S., and Braun, H. P. (2004) Respiratory chain supercomplexes in plant mitochondria, Plant Physiol. Biochem., 42, 937-942, https://doi.org/10.1016/j.plaphy.2004.09.010.

    Article  CAS  PubMed  Google Scholar 

  33. Cadenas, S. (2018) Mitochondrial uncoupling, ROS generation and cardioprotection, Biochim. Biophys. Acta Bioenerg., 1859, 940-950, https://doi.org/10.1016/j.bbabio.2018.05.019.

    Article  CAS  PubMed  Google Scholar 

  34. Grundlingh, J., Dargan, P. I., El-Zanfaly, M., and Wood, D. M. (2011) 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death, J. Med. Toxicol., 7, 205-212, https://doi.org/10.1007/s13181-011-0162-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wen, Y., Li, W., Poteet, E. C., Xie, L., Tan, C., et al. (2011) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection, J. Biol. Chem., 286, 16504-16515, https://doi.org/10.1074/jbc.M110.208447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harrop, G. A., and Barron, E. S. (1928) Studies on blood cell metabolism: I. The effect of methylene blue and other dyes upon the oxygen consumption of mammalian and avian erythrocytes, J. Exp. Med., 48, 207-223, https://doi.org/10.1084/jem.48.2.207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barron, E. S., and Hoffman, L. A. (1930) The catalytic effect of dyes on the oxygen consumption of living cells, J. Gen. Physiol., 13, 483-494, https://doi.org/10.1085/jgp.13.4.483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elliott, K. A., and Greig, M. E. (1938) The distribution of the succinic oxidase system in animal tissues, Biochem. J., 32, 1407-1423, https://doi.org/10.1042/bj0321407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Slater, E. C. (1949) A respiratory catalyst required for the reduction of cytochrome c by cytochrome b, Biochem. J., 45, 14-30, https://doi.org/10.1042/bj0450014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Redfearn, E. R. (1961) The role of ubiquinone (coenzyme Q) and its homologues in mediating the reduction of methylene blue by succinate in heart-muscle preparations, Biochim. Biophys. Acta, 53, 581-583, https://doi.org/10.1016/0006-3002(61)90220-7.

    Article  CAS  PubMed  Google Scholar 

  41. Tönz, O. (1968) The congenital methemoglobinemias. Physiology and pathophysiology of the hemiglobin metabolism, Bibliotheca Haematologica, 28, 1-146.

    Google Scholar 

  42. Visarius, T. M., Stucki, J. W., and Lauterburg, B. H. (1997) Stimulation of respiration by methylene blue in rat liver mitochondria, FEBS Lett., 412, 157-160, https://doi.org/10.1016/s0014-5793(97)00767-9.

    Article  CAS  PubMed  Google Scholar 

  43. Gureev, A. P., Samoylova, N. A., Potanina, D. V., and Popov, V. N. (2021) Effect of methylene blue and its metabolite – azure I – on bioenergetic parameters of intact mice brain mitochondria, Biomed. Khim., 67, 485-490, https://doi.org/10.18097/PBMC20216706485.

    Article  CAS  PubMed  Google Scholar 

  44. Callaway, N. L., Riha, P. D., Wrubel, K. M., McCollum, D., and Gonzalez-Lima, F. (2002) Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats, Neurosci. Lett., 332, 83-86, https://doi.org/10.1016/s0304-3940(02)00827-3.

    Article  CAS  PubMed  Google Scholar 

  45. Tretter, L., Horvath, G., Hölgyesi, A., Essek, F., and Adam-Vizi, V. (2014) Enhanced hydrogen peroxide generation accompanies the beneficial bioenergetic effects of methylene blue in isolated brain mitochondria, Free Radic. Biol. Med., 77, 317-330, https://doi.org/10.1016/j.freeradbiomed.2014.09.024.

    Article  CAS  PubMed  Google Scholar 

  46. Gureev, A. P., Syromyatnikov, M. Y., Gorbacheva, T. M., Starkov, A. A., and Popov, V. N. (2016) Methylene blue improves sensorimotor phenotype and decreases anxiety in parallel with activating brain mitochondria biogenesis in mid-age mice, Neurosci. Res., 113, 19-27, https://doi.org/10.1016/j.neures.2016.07.006.

    Article  CAS  PubMed  Google Scholar 

  47. Gureev, A. P., Shaforostova, E. A., Popov, V. N., and Starkov, A. A. (2019) Methylene blue does not bypass Complex III antimycin block in mouse brain mitochondria, FEBS Lett., 593, 499-503, https://doi.org/10.1002/1873-3468.13332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gureev, A. P., Shaforostova, E. A., Laver, D. A., Khorolskaya, V. G., Syromyatnikov, M. Y., et al. (2019) Methylene blue elicits non-genotoxic H2O2 production and protects brain mitochondria from rotenone toxicity, J. Appl. Biomed., 17, 107-114, https://doi.org/10.32725/jab.2019.008.

    Article  PubMed  Google Scholar 

  49. Atamna, H., Atamna, W., Al-Eyd, G., Shanower, G., and Dhahbi, J. M. (2015) Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue, Redox Biol., 6, 426-435, https://doi.org/10.1016/j.redox.2015.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, X., Rojas, J. C., and Gonzalez-Lima, F. (2006) Methylene blue prevents neurodegeneration caused by rotenone in the retina, Neurotox. Res., 9, 47-57, https://doi.org/10.1007/BF03033307.

    Article  PubMed  Google Scholar 

  51. Poteet, E., Winters, A., Yan, L. J., Shufelt, K., Green, K. N., et al. (2012) Neuroprotective actions of methylene blue and its derivatives, PLoS One, 7, e48279, https://doi.org/10.1371/journal.pone.0048279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mikulás, K., Komlódi, T., Földes, A., Sváb, G., Horváth, G., et al. (2020) Bioenergetic Impairment of triethylene glycol dimethacrylate- (TEGDMA-) treated dental pulp stem cells (DPSCs) and isolated brain mitochondria are amended by redox compound methylene blue, Materials, 13, 3472, https://doi.org/10.3390/ma13163472.

    Article  CAS  PubMed Central  Google Scholar 

  53. Sváb, G., Kokas, M., Sipos, I., Ambrus, A., and Tretter, L. (2021) Methylene blue bridges the inhibition and produces unusual respiratory changes in complex III-inhibited mitochondria. Studies on rats, mice and guinea pigs, Antioxidants, 10, 305, https://doi.org/10.3390/antiox10020305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Irwin, M. H., Parameshwaran, K., and Pinkert, C. A. (2013) Mouse models of mitochondrial complex I dysfunction, Int. J. Biochem. Cell Biol., 45, 34-40, https://doi.org/10.1016/j.biocel.2012.08.009.

    Article  CAS  PubMed  Google Scholar 

  55. Bahn, G., and Jo, D. G. (2019) Therapeutic approaches to Alzheimer’s disease through modulation of NRF2, Neuromol. Med., 21, 1-11, https://doi.org/10.1007/s12017-018-08523-5.

    Article  CAS  Google Scholar 

  56. Taniguchi, S., Suzuki, N., Masuda, M., Hisanaga, S., Iwatsubo, T., et al. (2005) Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins, J. Biol. Chem., 280, 7614-7623, https://doi.org/10.1074/jbc.M408714200.

    Article  CAS  PubMed  Google Scholar 

  57. Hattori, M., Sugino, E., Minoura, K., In, Y., Sumida, M., et al. (2008) Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain, Biochem. Biophys. Res. Commun., 374, 158-163, https://doi.org/10.1016/j.bbrc.2008.07.001.

    Article  CAS  PubMed  Google Scholar 

  58. Stack, C., Jainuddin, S., Elipenahli, C., Gerges, M., Starkova, N., et al. (2014) Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity, Hum. Mol. Genet., 23, 3716-3732, https://doi.org/10.1093/hmg/ddu080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hochgräfe, K., Sydow, A., Matenia, D., Cadinu, D., Könen, S., et al. (2015) Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau, Acta Neuropathol. Commun., 3, 25, https://doi.org/10.1186/s40478-015-0204-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Necula, M., Breydo, L., Milton, S., Kayed, R., van der Veer, W. E., et al. (2007) Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization, Biochemistry, 46, 8850-8860, https://doi.org/10.1021/bi700411k.

    Article  CAS  PubMed  Google Scholar 

  61. Lee, B. I., Suh, Y. S., Chung, Y. J., Yu, K., and Park, C. B. (2017) Shedding light on Alzheimer’s β-amyloidosis: photosensitized methylene blue inhibits self-assembly of β-amyloid peptides and disintegrates their aggregates, Sci. Rep., 7, 7523, https://doi.org/10.1038/s41598-017-07581-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Berrocal, M., Corbacho, I., Gutierrez-Merino, C., and Mata, A. M. (2018) Methylene blue activates the PMCA activity and cross-interacts with amyloid β-peptide, blocking Aβ-mediated PMCA inhibition, Neuropharmacology, 139, 163-172, https://doi.org/10.1016/j.neuropharm.2018.07.012.

    Article  CAS  PubMed  Google Scholar 

  63. Berrocal, M., Caballero-Bermejo, M., Gutierrez-Merino, C., and Mata, A. M. (2019) Methylene blue blocks and reverses the inhibitory effect of Tau on PMCA function, Int. J. Mol. Sci., 20, 3521, https://doi.org/10.3390/ijms20143521.

    Article  CAS  PubMed Central  Google Scholar 

  64. Illarioshkin, S. N., Klyushnikov, S. A., Vigont, V. A., Seliverstov, Y. A., and Kaznacheyeva, E. V. (2018) Molecular pathogenesis in Huntington’s disease, Biochemistry (Moscow), 83, 1030-1039, https://doi.org/10.1134/S0006297918090043.

    Article  CAS  Google Scholar 

  65. Cavaliere, P., Torrent, J., Prigent, S., Granata, V., Pauwels, K., et al. (2013) Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein, Biochim. Biophys. Acta, 1832, 20-28, https://doi.org/10.1016/j.bbadis.2012.09.005.

    Article  CAS  PubMed  Google Scholar 

  66. Paré, B., Lehmann, M., Beaudin, M., Nordström, U., Saikali, S., et al. (2018) Misfolded SOD1 pathology in sporadic amyotrophic lateral sclerosis, Sci. Rep., 8, 14223, https://doi.org/10.1038/s41598-018-31773-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yamashita, M., Nonaka, T., Arai, T., Kametani, F., Buchman, V. L., et al. (2009) Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models, FEBS Lett., 583, 2419-2424, https://doi.org/10.1016/j.febslet.2009.06.042.

    Article  CAS  PubMed  Google Scholar 

  68. Musteikyte, G., Ziaunys, M., and Smirnovas, V. (2020) Methylene blue inhibits nucleation and elongation of SOD1 amyloid fibrils, PeerJ, 8, e9719, https://doi.org/10.7717/peerj.9719.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vaccaro, A., Patten, S. A., Ciura, S., Maios, C., Therrien, M., et al. (2012) Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio, PLoS One, 7, e42117, https://doi.org/10.1371/journal.pone.0042117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vaccaro, A., Patten, S. A., Aggad, D., Julien, C., Maios, C., et al. (2013) Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo, Neurobiol. Dis., 55, 64-75, https://doi.org/10.1016/j.nbd.2013.03.015.

    Article  CAS  PubMed  Google Scholar 

  71. Dinkova-Kostova, A. T., and Abramov, A. Y. (2015) The emerging role of Nrf2 in mitochondrial function, Free Radic. Biol. Med., 88, 179-188, https://doi.org/10.1016/j.freeradbiomed.2015.04.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hayes, J. D., Chowdhry, S., Dinkova-Kostova, A. T., and Sutherland, C. (2015) Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3, Biochem. Soc. Trans., 43, 611-620, https://doi.org/10.1042/BST20150011.

    Article  CAS  PubMed  Google Scholar 

  73. Zenkov, N. K., Kozhin, P. M., Chechushkov, A. V., Martinovich, G. G., Kandalintseva, N. V., et al. (2017) Mazes of Nrf2 regulation, Biochemistry (Moscow), 82, 556-564, https://doi.org/10.1134/S0006297917050030.

    Article  CAS  Google Scholar 

  74. El Sayed, N. S., and Sayed, A. S. (2019) Protective effect of methylene blue on TNBS-induced colitis in rats mediated through the modulation of inflammatory and apoptotic signalling pathways, Arch. Toxicol., 93, 2927-2942, https://doi.org/10.1007/s00204-019-02548-w.

    Article  CAS  PubMed  Google Scholar 

  75. Kaur, S., and Benov, L. T. (2020) Methylene blue induces the soxRS regulon of Escherichia coli, Chem. Biol. Interact., 329, 109222, https://doi.org/10.1016/j.cbi.2020.109222.

    Article  CAS  PubMed  Google Scholar 

  76. Gureev, A. P., Shaforostova, E. A., and Popov, V. N. (2019) Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways, Front. Genet., 10, 435, https://doi.org/10.3389/fgene.2019.00435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fernandez-Marcos, P. J., and Auwerx, J. (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis, Am. J. Clin. Nutr., 93, 884S-890S, https://doi.org/10.3945/ajcn.110.001917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Islam, H., Hood, D. A., and Gurd, B. J. (2020) Looking beyond PGC-1α: emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds, Appl. Physiol. Nutr. Metab., 45, 11-23, https://doi.org/10.1139/apnm-2019-0069.

    Article  PubMed  Google Scholar 

  79. Xie, L., Li, W., Winters, A., Yuan, F., Jin, K., et al. (2013) Methylene blue induces macroautophagy through 5′ adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation, Front. Cell Neurosci., 7, 56, https://doi.org/10.3389/fncel.2013.00056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kroemer, G., Mariño, G., and Levine, B. (2010) Autophagy and the integrated stress response, Mol. Cell, 40, 280-293, https://doi.org/10.1016/j.molcel.2010.09.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Telli, M. L., Nagata, H., Wapnir, I., Acharya, C. R., Zablotsky, K., et al. (2021) Intratumoral plasmid IL12 expands CD8+ T cells and induces a CXCR3 gene signature in triple-negative breast tumors that sensitizes patients to anti-PD-1 therapy, Clin. Cancer Res., 27, 2481-2493, https://doi.org/10.1158/1078-0432.CCR-20-3944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wong, E., and Cuervo, A. M. (2010) Autophagy gone awry in neurodegenerative diseases, Nat. Neurosci., 13, 805-811, https://doi.org/10.1038/nn.2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Medina, D. X., Caccamo, A., and Oddo, S. (2011) Methylene blue reduces aβ levels and rescues early cognitive deficit by increasing proteasome activity, Brain Pathol., 21, 140-149, https://doi.org/10.1111/j.1750-3639.2010.00430.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Congdon, E. E., Wu, J. W., Myeku, N., Figueroa, Y. H., Herman, M., et al. (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo, Autophagy, 8, 609-622, https://doi.org/10.4161/auto.19048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jiang, Z., Watts, L. T., Huang, S., Shen, Q., Rodriguez, P., et al. (2015) The effects of methylene blue on autophagy and apoptosis in MRI-defined normal tissue, ischemic penumbra and ischemic core, PLoS One, 10, e0131929, https://doi.org/10.1371/journal.pone.0131929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao, M., Liang, F., Xu, H., Yan, W., and Zhang, J. (2016) Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation, Mol. Med. Rep., 13, 13-20, https://doi.org/10.3892/mmr.2015.4551.

    Article  CAS  PubMed  Google Scholar 

  87. Di, Y., He, Y. L., Zhao, T., Huang, X., Wu, K. W., et al. (2015) Methylene blue reduces acute cerebral ischemic injury via the induction of mitophagy, Mol. Med., 21, 420-429, https://doi.org/10.2119/molmed.2015.00038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gureev, A. P., Sadovnikova, I. S., Starkov, N. N., Starkov, A. A., and Popov, V. N. (2020) p62-Nrf2-p62 mitophagy regulatory loop as a target for preventive therapy of neurodegenerative diseases, Brain Sci., 10, 847, https://doi.org/10.3390/brainsci10110847.

    Article  CAS  PubMed Central  Google Scholar 

  89. Murata, H., Takamatsu, H., Liu, S., Kataoka, K., Huh, N. H., et al. (2015) NRF2 regulates PINK1 expression under oxidative stress conditions, PLoS One, 10, e0142438, https://doi.org/10.1371/journal.pone.0142438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dos Santos, A. F., Terra, L. F., Wailemann, R. A., Oliveira, T. C., Gomes, V. M., et al. (2017) Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells, BMC Cancer, 17, 194, https://doi.org/10.1186/s12885-017-3179-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lucky, S. S., Soo, K. C., and Zhang, Y. (2015) Nanoparticles in photodynamic therapy, Chem. Rev., 115, 1990-2042, https://doi.org/10.1021/cr5004198.

    Article  CAS  PubMed  Google Scholar 

  92. Tardivo, J. P., Del Giglio, A., de Oliveira, C. S., Gabrielli, D. S., Junqueira, H. C., et al. (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications, Photodiagn. Photodyn. Ther., 2, 175-191, https://doi.org/10.1016/S1572-1000(05)00097-9.

    Article  CAS  Google Scholar 

  93. Eimon, P. M., Kratz, E., Varfolomeev, E., Hymowitz, S. G., Stern, H., et al. (2006) Delineation of the cell-extrinsic apoptosis pathway in the zebrafish, Cell Death Differ., 13, 1619-1630, https://doi.org/10.1038/sj.cdd.4402015.

    Article  CAS  PubMed  Google Scholar 

  94. Bellail, A. C., Tse, M. C., Song, J. H., Phuphanich, S., Olson, J. J., et al. (2010) DR5-mediated DISC controls caspase-8 cleavage and initiation of apoptosis in human glioblastomas, J. Cell Mol. Med., 14, 1303-1317, https://doi.org/10.1111/j.1582-4934.2009.00777.x.

    Article  CAS  PubMed  Google Scholar 

  95. Garrido, C., Galluzzi, L., Brunet, M., Puig, P. E., Didelot, C., et al. (2006) Mechanisms of cytochrome c release from mitochondria, Cell Death Differ., 13, 1423-1433, https://doi.org/10.1038/sj.cdd.4401950.

    Article  CAS  PubMed  Google Scholar 

  96. Wu, C. C., and Bratton, S. B. (2013) Regulation of the intrinsic apoptosis pathway by reactive oxygen species, Antioxid Redox Signal., 19, 546-558, https://doi.org/10.1089/ars.2012.4905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roy, S., and Nicholson, D. W. (2000) Cross-talk in cell death signaling, J. Exp. Med., 192, F21-F25.

    Article  CAS  Google Scholar 

  98. Connolly, P. F., Jäger, R., and Fearnhead, H. O. (2014) New roles for old enzymes: killer caspases as the engine of cell behavior changes, Front. Physiol., 5, 149, https://doi.org/10.3389/fphys.2014.00149.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Radi, E., Formichi, P., Battisti, C., and Federico, A. (2014) Apoptosis and oxidative stress in neurodegenerative diseases, J. Alzheimer’s Dis., 42, S125-S152, https://doi.org/10.3233/JAD-132738.

    Article  CAS  Google Scholar 

  100. Chen, C., Zhou, F., Zeng, L., Jiang, Z., and Hu, Z. (2019) Methylene blue offers neuroprotection after intracerebral hemorrhage in rats through the PI3K/Akt/GSK3β signaling pathway, J. Cell Physiol., 234, 5304-5318, https://doi.org/10.1002/jcp.27339.

    Article  CAS  PubMed  Google Scholar 

  101. Abdel-Salam, O., Omara, E., Youness, E., Khadrawy, Y., Mohammed, N., et al. (2014) Rotenone-induced nigrostriatal toxicity is reduced by methylene blue, J. Neurorestoratol., 2, 65-80, https://doi.org/10.2147/JN.S49207.

    Article  CAS  Google Scholar 

  102. Lee, K. K., and Boelsterli, U. A. (2014) Bypassing the compromised mitochondrial electron transport with methylene blue alleviates efavirenz/isoniazid-induced oxidant stress and mitochondria-mediated cell death in mouse hepatocytes, Redox Biol., 2, 599-609, https://doi.org/10.1016/j.redox.2014.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Abdelkader, N. F., Farid, H. A., Youness, E. R., Abdel-Salam, O., and Zaki, H. F. (2020) The role of KATP channel blockade and activation in the protection against neurodegeneration in the rotenone model of Parkinson’s disease, Life Sci., 257, 118070, https://doi.org/10.1016/j.lfs.2020.118070.

    Article  CAS  PubMed  Google Scholar 

  104. Pakavathkumar, P., Sharma, G., Kaushal, V., Foveau, B., and LeBlanc, A. C. (2015) Methylene blue inhibits caspases by oxidation of the catalytic cysteine, Sci. Rep., 5, 13730, https://doi.org/10.1038/srep13730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou, L., Flores, J., Noël, A., Beauchet, O., Sjöström, P. J., et al. (2019) Methylene blue inhibits Caspase-6 activity, and reverses Caspase-6-induced cognitive impairment and neuroinflammation in aged mice, Acta Neuropathol. Commun., 7, 210, https://doi.org/10.1186/s40478-019-0856-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ahn, H., Kang, S. G., Yoon, S. I., Ko, H. J., Kim, P. H., et al. (2017) Methylene blue inhibits NLRP3, NLRC4, AIM2, and non-canonical inflammasome activation, Sci. Rep., 7, 12409, https://doi.org/10.1038/s41598-017-12635-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Amor, S., Puentes, F., Baker, D., and van der Valk, P. (2010) Inflammation in neurodegenerative diseases, Immunology, 129, 154-169, https://doi.org/10.1111/j.1365-2567.2009.03225.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., et al. (2017) Inflammatory responses and inflammation-associated diseases in organs, Oncotarget, 9, 7204-7218, https://doi.org/10.18632/oncotarget.23208.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zelová, H., and Hošek, J. (2013) TNF-α signalling and inflammation: interactions between old acquaintances, Inflamm. Res., 62, 641-651, https://doi.org/10.1007/s00011-013-0633-0.

    Article  CAS  PubMed  Google Scholar 

  110. Monaco, C., Andreakos, E., Kiriakidis, S., Mauri, C., Bicknell, C., et al. (2004) Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis, Proc. Natl. Acad. Sci. USA, 101, 5634-5639, https://doi.org/10.1073/pnas.0401060101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, J. J., Lu, L., Hu, F. Q., Yuan, H., Xu, Q., et al. (2018) Methylene blue attenuates renal ischemia-reperfusion injury by negative regulation of NLRP3 signaling pathway, Eur. Rev. Med. Pharmacol. Sci., 22, 2847-2853, https://doi.org/10.26355/eurrev_201805_14986.

    Article  PubMed  Google Scholar 

  112. Zheng, J., and Li, Q. (2019) Methylene blue regulates inflammatory response in osteoarthritis by noncoding long chain RNA CILinc02, J. Cell Biochem., 120, 3331-3338, https://doi.org/10.1002/jcb.27602.

    Article  CAS  PubMed  Google Scholar 

  113. Wang, S. W., and Sun, Y. M. (2014) The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (review), Int. J. Oncol., 44, 1032-1040, https://doi.org/10.3892/ijo.2014.2259.

    Article  CAS  PubMed  Google Scholar 

  114. Lobo-Silva, D., Carriche, G. M., Castro, A. G., Roque, S., and Saraiva, M. (2016) Balancing the immune response in the brain: IL-10 and its regulation, J. Neuroinflamm., 13, 297, https://doi.org/10.1186/s12974-016-0763-8.

    Article  CAS  Google Scholar 

  115. Riley, J. K., Takeda, K., Akira, S., and Schreiber, R. D. (1999) Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action, J. Biol. Chem., 274, 16513-16521, https://doi.org/10.1074/jbc.274.23.16513.

    Article  CAS  PubMed  Google Scholar 

  116. Shih, J. C., Chen, K., and Ridd, M. J. (1999) Role of MAO A and B in neurotransmitter metabolism and behavior, Pol. J. Pharmacol., 51, 25-29.

    CAS  PubMed  Google Scholar 

  117. Godar, S. C., Bortolato, M., Frau, R., Dousti, M., Chen, K., et al. (2011) Maladaptive defensive behaviours in monoamine oxidase A-deficient mice, Int. J. Neuropsychopharmacol., 14, 1195-1207, https://doi.org/10.1017/S1461145710001483.

    Article  CAS  PubMed  Google Scholar 

  118. Watson, C., Bates, J., and Franczak, R. (2009) Serotonin regulation by astrocytes, FASEB J., 23, 790.2, https://doi.org/10.1096/fasebj.23.1_supplement.790.2.

    Article  Google Scholar 

  119. Paudel, P., Park, S. E., Seong, S. H., Jung, H. A., and Choi, J. S. (2019) Novel Diels-Alder type adducts from morus alba root bark targeting human monoamine oxidase and dopaminergic receptors for the management of neurodegenerative diseases, Int. J. Mol. Sci., 20, 6232, https://doi.org/10.3390/ijms20246232.

    Article  CAS  PubMed Central  Google Scholar 

  120. Ordway, G. A., Farley, J. T., Dilley, G. E., Overholser, J. C., Meltzer, H. Y., et al. (1999) Quantitative distribution of monoamine oxidase A in brainstem monoamine nuclei is normal in major depression, Brain Res., 847, 71-79, https://doi.org/10.1016/s0006-8993(99)02043-0.

    Article  CAS  PubMed  Google Scholar 

  121. Aeschlimann, C., Cerny, T., and Küpfer, A. (1996) Inhibition of (mono)amine oxidase activity and prevention of ifosfamide encephalopathy by methylene blue, Drug Metabol. Dispos., 24, 1336-1339.

    CAS  Google Scholar 

  122. Ramsay, R. R., Dunford, C., and Gillman, P. K. (2007) Methylene blue and serotonin toxicity: inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction, Br. J. Pharmacol., 152, 946-951, https://doi.org/10.1038/sj.bjp.0707430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Harvey, B. H., Duvenhage, I., Viljoen, F., Scheepers, N., Malan, S. F., et al. (2010) Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues, Biochem. Pharmacol., 80, 1580-1591, https://doi.org/10.1016/j.bcp.2010.07.037.

    Article  CAS  PubMed  Google Scholar 

  124. Delport, A., Harvey, B. H., Petzer, A., and Petzer, J. P. (2014) Azure B and a synthetic structural analogue of methylene blue, ethylthioninium chloride, present with antidepressant-like properties, Life Sci., 117, 56-66, https://doi.org/10.1016/j.lfs.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  125. Petzer, A., Harvey, B. H., Wegener, G., and Petzer, J. P. (2012) Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase, Toxicol. Appl. Pharmacol., 258, 403-409, https://doi.org/10.1016/j.taap.2011.12.005.

    Article  CAS  PubMed  Google Scholar 

  126. Reis, P. A., Gonçalves de Albuquerque, C. F., Maron-Gutierrez, T., Silva, A. R, and de Castro Faria Neto, H. C. (2017) Role of nitric oxide synthase in the function of the central nervous system under normal and infectious conditions, Nitric Oxide Synthase, IntechOpen, https://doi.org/10.5772/67816.

  127. Czapski, G. A., Cakala, M., Chalimoniuk, M., Gajkowska, B., and Strosznajder, J. B. (2007) Role of nitric oxide in the brain during lipopolysaccharide-evoked systemic inflammation, J. Neurosci. Res., 85, 1694-1703, https://doi.org/10.1002/jnr.21294.

    Article  CAS  PubMed  Google Scholar 

  128. Zhou, X. Y., Zhang, F., Ying, C. J., Chen, J., Chen, L., et al. (2017) Inhibition of iNOS alleviates cognitive deficits and depression in diabetic mice through downregulating the NO/sGC/cGMP/PKG signal pathway, Behav. Brain Res., 322, 70-82, https://doi.org/10.1016/j.bbr.2016.12.046.

    Article  CAS  PubMed  Google Scholar 

  129. Chen, H. J., Spiers, J. G., Sernia, C., and Lavidis, N. A. (2015) Response of the nitrergic system to activation of the neuroendocrine stress axis, Front. Neurosci., 9, 3, https://doi.org/10.3389/fnins.2015.00003.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhou, Q. G., Zhu, L. J., Chen, C., Wu, H. Y., Luo, C. X., et al. (2011) Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor, J. Neurosci., 31, 7579-7590, https://doi.org/10.1523/JNEUROSCI.0004-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gragnoli, C. (2014) Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome, Appl. Clin. Genet., 7, 43-53, https://doi.org/10.2147/TACG.S39993.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mayer, B., Brunner, F., and Schmidt, K. (1993) Inhibition of nitric oxide synthesis by methylene blue, Biochem. Pharmacol., 45, 367-374, https://doi.org/10.1016/0006-2952(93)90072-5.

    Article  CAS  PubMed  Google Scholar 

  133. Ignarro, L. J., Burke, T. M., Wood, K. S., Wolin, M. S., and Kadowitz, P. J. (1984) Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery, J. Pharmacol. Exp. Ther., 228, 682-690.

    CAS  PubMed  Google Scholar 

  134. Luo, D., Das, S., and Vincent, S. R. (1995) Effects of methylene blue and LY83583 on neuronal nitric oxide synthase and NADPH-diaphorase, Eur. J. Pharmacol., 290, 247-251, https://doi.org/10.1016/0922-4106(95)00084-4.

    Article  CAS  PubMed  Google Scholar 

  135. Volke, V., Wegener, G., Vasar, E., and Rosenberg, R. (1999) Methylene blue inhibits hippocampal nitric oxide synthase activity in vivo, Brain Res., 826, 303-305, https://doi.org/10.1016/s0006-8993(99)01253-6.

    Article  CAS  PubMed  Google Scholar 

  136. Deutsch, S., Rosse, R., Paul, S., Tomasino, V., Koetzner, L., et al. (1996) 7-Nitroindazole and methylene blue, inhibitors of neuronal nitric oxide synthase and NO-stimulated guanylate cyclase, block MK-801-elicited behaviors in mice, Neuropsychopharmacology, 15, 37-43, https://doi.org/10.1016/0893-133X(95)00153-5.

    Article  CAS  PubMed  Google Scholar 

  137. Lomniczi, A., Cebral, E., Canteros, G., McCann, S. M., and Rettori, V. (2000) Methylene blue inhibits the increase of inducible nitric oxide synthase activity induced by stress and lipopolysaccharide in the medial basal hypothalamus of rats, Neuroimmunomodulation, 8, 122-127, https://doi.org/10.1159/000054271.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation under the State assignment for universities in the field of scientific activity for 2020-2022 (project FZGU-2020-0044), scholarships of the President of the Russian Federation for young scientists and graduate students (SP-2802.2021.4), and a grant from the President of the Russian Federation for state support of young Russian scientists and state support for leading scientific schools (NSh-1375.2022.5).

Author information

Authors and Affiliations

Authors

Contributions

Artem P. Gureev – writing the text, Irina S. Sadovnikova – search and annotation of articles, preparation of drawings, Vasily N. Popov – concept and administration.

Corresponding author

Correspondence to Artem P. Gureev.

Ethics declarations

The authors declare no conflicts of interests in financial or any other sphere. This article does not contain a description of any research involving humans or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gureev, A.P., Sadovnikova, I.S. & Popov, V.N. Molecular Mechanisms of the Neuroprotective Effect of Methylene Blue. Biochemistry Moscow 87, 940–956 (2022). https://doi.org/10.1134/S0006297922090073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922090073

Keywords

Navigation