Skip to main content
Log in

Effect of DNA Methylation on the 3′→5′ Exonuclease Activity of Major Human Abasic Site Endonuclease APEX1

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Apurinic/apyrimidinic (AP) endonucleases are the key enzymes in the DNA base excision repair, as they hydrolyze the phosphodiester bond in the AP site formed after removal of the damaged base. Major human AP endonuclease APEX1 also possesses the 3′-phosphodiesterase and 3′→5′ exonuclease activities. The biological role of the latter has not been established yet; it is assumed that it corrects DNA synthesis errors during DNA repair. If DNA is damaged at the 3′-side of 5-methylcytosine (mC) residue, the 3′→5′ exonuclease activity can change the epigenetic methylation status of the CpG dinucleotide. It remains unclear whether the 3′→5′ exonuclease activity of APEX1 contributes to the active epigenetic demethylation or, on the contrary, is limited in the case of methylated CpG dinucleotides in order to preserve the epigenetic status upon repair of accidental DNA damage. Here, we report the results of the first systematic study on the efficiency of removal of 3′-terminal nucleotides from the substrates modeling DNA repair intermediates in the CpG dinucleotides. The best substrates for the 3′→5′ exonuclease activity of APEX1 were oligonucleotides with the 3′-terminal bases non-complementary to the template, while the worst substrates contained mC. The presence of mC in the complementary strand significantly reduced the reaction rate even for the non-complementary 3′-ends. Therefore, the efficiency of the 3′→5′ exonuclease reaction catalyzed by APEX1 is limited in the case of the methylated CpG dinucleotides, which likely reflects the need to preserve the epigenetic status during DNA repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

AP:

apurinic/apyrimidinic

APEX1:

apurinic/apyrimidinic endo/exonuclease 1

BER:

base excision repair

dmCMP:

5-methylcytosine-2′-deoxyribose monophosphate

mC:

5-methylcytosine

F:

2-(hydroxymethyl)tetrahydrofuran-3-ol

OGG1:

8-oxoguanine–DNA glycosylase 1

ODN:

oligodeoxyribonucleotide

oxoG:

8-oxoguanine

TET protein:

ten-eleven translocation family protein

References

  1. Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., et al. (2006) DNA Repair and Mutagenesis, ASM Press, Washington, D.C., 1118 pp.

  2. Halliwell, B., and Gutteridge, J. M. C. (2007) Free Radicals in Biology and Medicine, 4th Edn., Oxford University Press, Oxford, 704 pp.

  3. Stivers, J. T., and Jiang, Y. L. (2003) A mechanistic perspective on the chemistry of DNA repair glycosylases, Chem. Rev., 103, 2729-2760, https://doi.org/10.1021/cr010219b.

    Article  CAS  PubMed  Google Scholar 

  4. Kohli, R. M., and Zhang, Y. (2013) TET enzymes, TDG and the dynamics of DNA demethylation, Nature, 502, 472-479, https://doi.org/10.1038/nature12750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, X., and Zhang, Y. (2017) TET-mediated active DNA demethylation: Mechanism, function and beyond, Nat. Rev. Genet., 18, 517-534, https://doi.org/10.1038/nrg.2017.33.

    Article  CAS  PubMed  Google Scholar 

  6. Chou, K.-M., and Cheng, Y.-C. (2002) An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3′-mispaired DNA, Nature, 415, 655-659, https://doi.org/10.1038/415655a.

    Article  CAS  PubMed  Google Scholar 

  7. Chou, K.-M., and Cheng, Y.-C. (2003) The exonuclease activity of human apurinic/apyrimidinic endonuclease (APE1): Biochemical properties and inhibition by the natural dinucleotide Gp4G, J. Biol. Chem., 278, 18289-18296, https://doi.org/10.1074/jbc.M212143200.

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, D. M., III (2003) Properties of and substrate determinants for the exonuclease activity of human apurinic endonuclease Ape1, J. Mol. Biol., 330, 1027-1037, https://doi.org/10.1016/S0022-2836(03)00712-5.

    Article  CAS  PubMed  Google Scholar 

  9. Mazur, D. J., and Perrino, F. W. (1999) Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′→5′ exonucleases, J. Biol. Chem., 274, 19655-19660, https://doi.org/10.1074/jbc.274.28.19655.

    Article  CAS  PubMed  Google Scholar 

  10. Albertson, T. M., Ogawa, M., Bugni, J. M., Hays, L. E., Chen, Y., et al. (2009) DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice, Proc. Natl. Acad. Sci. USA, 106, 17101-17104, https://doi.org/10.1073/pnas.0907147106.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kasymov, R. D., Grin, I. R., Endutkin, A. V., Smirnov, S. L., Ishchenko, A. A., et al. (2013) Excision of 8-oxoguanine from methylated CpG dinucleotides by human 8-oxoguanine DNA glycosylase, FEBS Lett., 587, 3129-3134, https://doi.org/10.1016/j.febslet.2013.08.008.

    Article  CAS  PubMed  Google Scholar 

  12. Beaver, J. M., Lai, Y., Xu, M., Casin, A. H., Laverde, E. E., et al. (2015) AP endonuclease 1 prevents trinucleotide repeat expansion via a novel mechanism during base excision repair, Nucleic Acids Res., 43, 5948-5960, https://doi.org/10.1093/nar/gkv530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Çağlayan, M., Horton, J. K., Dai, D.-P., Stefanick, D. F., and Wilson, S. H. (2017) Oxidized nucleotide insertion by pol β confounds ligation during base excision repair, Nat. Commun., 8, 14045, https://doi.org/10.1038/ncomms14045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, T.-C., Lin, C.-T., Chang, K.-C., Guo, K.-W., Wang, S., et al. (2021) APE1 distinguishes DNA substrates in exonucleolytic cleavage by induced space-filling, Nat. Commun., 12, 601, https://doi.org/10.1038/s41467-020-20853-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wong, D., DeMott, M. S., and Demple, B. (2003) Modulation of the 3′→5′-exonuclease activity of human apurinic endonuclease (Ape1) by its 5′-incised abasic DNA product, J. Biol. Chem., 278, 36242-36249, https://doi.org/10.1074/jbc.M306065200.

    Article  CAS  PubMed  Google Scholar 

  16. Perillo, B., Ombra, M. N., Bertoni, A., Cuozzo, C., Sacchetti, S., et al. (2008) DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression, Science, 319, 202-206, https://doi.org/10.1126/science.1147674.

    Article  CAS  PubMed  Google Scholar 

  17. Amente, S., Bertoni, A., Morano, A., Lania, L., Avvedimento, E. V., et al. (2010) LSD1-mediated demethylation of histone H3 lysine 4 triggers Myc-induced transcription, Oncogene, 29, 3691-3702, https://doi.org/10.1038/onc.2010.120.

    Article  CAS  PubMed  Google Scholar 

  18. Zuchegna, C., Aceto, F., Bertoni, A., Romano, A., Perillo, B., et al. (2014) Mechanism of retinoic acid-induced transcription: Histone code, DNA oxidation and formation of chromatin loops, Nucleic Acids Res., 42, 11040-11055, https://doi.org/10.1093/nar/gku823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pastukh, V., Roberts, J. T., Clark, D. W., Bardwell, G. C., Patel, M., et al. (2015) An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression, Am. J. Physiol. Lung Cell. Mol. Physiol., 309, L1367-L1375, https://doi.org/10.1152/ajplung.00236.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allgayer, J., Kitsera, N., Bartelt, S., Epe, B., and Khobta, A. (2016) Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine, Nucleic Acids Res., 44, 7267-7280, https://doi.org/10.1093/nar/gkw473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Müller, N., and Khobta, A. (2021) Regulation of GC box activity by 8-oxoguanine, Redox Biol., 43, 101997, https://doi.org/10.1016/j.redox.2021.101997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grin, I., and Ishchenko, A. A. (2016) An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation, Nucleic Acids Res., 44, 3713-3727, https://doi.org/10.1093/nar/gkw059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woodrick, J., Gupta, S., Camacho, S., Parvathaneni, S., Choudhury, S., et al. (2017) A new sub-pathway of long-patch base excision repair involving 5′ gap formation, EMBO J., 36, 1605-1622, https://doi.org/10.15252/embj.201694920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murayama, A., Sakura, K., Nakama, M., Yasuzawa-Tanaka, K., Fujita, E., et al. (2006) A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory, EMBO J., 25, 1081-1092, https://doi.org/10.1038/sj.emboj.7601012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cuomo, M., Keller, S., Punzo, D., Nuzzo, T., Affinito, O., et al. (2019) Selective demethylation of two CpG sites causes postnatal activation of the Dao gene and consequent removal of D-serine within the mouse cerebellum, Clin. Epigenetics, 11, 149, https://doi.org/10.1186/s13148-019-0732-z.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Turker, M. S. (2002) Gene silencing in mammalian cells and the spread of DNA methylation, Oncogene, 21, 5388-5393, https://doi.org/10.1038/sj.onc.1205599.

    Article  CAS  PubMed  Google Scholar 

  27. Ehrlich, M., and Lacey, M. (2013) DNA hypomethylation and hemimethylation in cancer, Adv. Exp. Med. Biol., 754, 31-56, https://doi.org/10.1007/978-1-4419-9967-2_2.

    Article  CAS  PubMed  Google Scholar 

  28. Sidorenko, V. S., Nevinsky, G. A., and Zharkov, D. O. (2007) Mechanism of interaction between human 8-oxoguanine-DNA glycosylase and AP endonuclease, DNA Repair, 6, 317-328, https://doi.org/10.1016/j.dnarep.2006.10.022.

    Article  CAS  PubMed  Google Scholar 

  29. Takeshita, M., Chang, C.-N., Johnson, F., Will, S., and Grollman, A. P. (1987) Oligodeoxynucleotides containing synthetic abasic sites: Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases, J. Biol. Chem., 262, 10171-10179, https://doi.org/10.1016/S0021-9258(18)61093-2.

    Article  CAS  PubMed  Google Scholar 

  30. Kroeger, K. M., Goodman, M. F., and Greenberg, M. M. (2004) A comprehensive comparison of DNA replication past 2-deoxyribose and its tetrahydrofuran analog in Escherichia coli, Nucleic Acids Res., 32, 5480-5485, https://doi.org/10.1093/nar/gkh873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seki, S., Hatsushika, M., Watanabe, S., Akiyama, K., Nagao, K., et al. (1992) cDNA cloning, sequencing, expression and possible domain structure of human APEX nuclease homologous to Escherichia coli exonuclease III, Biochim. Biophys. Acta, 1131, 287-299, https://doi.org/10.1016/0167-4781(92)90027-W.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, D. M., III, Takeshita, M., Grollman, A. P., and Demple, B. (1995) Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA, J. Biol. Chem., 270, 16002-16007, https://doi.org/10.1074/jbc.270.27.16002.

    Article  CAS  PubMed  Google Scholar 

  33. Lebedeva, N. A., Khodyreva, S. N., Favre, A., and Lavrik, O. I. (2003) AP endonuclease 1 has no biologically significant 3′→5′-exonuclease activity, Biochem. Biophys. Res. Commun., 300, 182-187, https://doi.org/10.1016/S0006-291X(02)02808-5.

    Article  CAS  PubMed  Google Scholar 

  34. Dyrkheeva, N. S., Lomzov, A. A., Pyshnyi, D. V., Khodyreva, S. N., and Lavrik, O. I. (2006) Efficiency of exonucleolytic action of apurinic/apyrimidinic endonuclease 1 towards matched and mismatched dNMP at the 3′-terminus of different oligomeric DNA structures correlates with thermal stability of DNA duplexes, Biochim. Biophys. Acta, 1764, 699-706, https://doi.org/10.1016/j.bbapap.2006.01.004.

    Article  CAS  PubMed  Google Scholar 

  35. Kuznetsova, A. A., Fedorova, O. S., and Kuznetsov, N. A. (2018) Kinetic features of 3′-5′ exonuclease activity of human AP-endonuclease APE1, Molecules, 23, 2101, https://doi.org/10.3390/molecules23092101.

    Article  CAS  PubMed Central  Google Scholar 

  36. Chou, K.-M., Kukhanova, M., and Cheng, Y.-C. (2000) A novel action of human apurinic/apyrimidinic endonuclease: excision of L-configuration deoxyribonucleoside analogs from the 3′ termini of DNA, J. Biol. Chem., 275, 31009-31015, https://doi.org/10.1074/jbc.M004082200.

    Article  CAS  PubMed  Google Scholar 

  37. Lam, W., Park, S.-Y., Leung, C.-H., and Cheng, Y.-C. (2006) Apurinic/apyrimidinic endonuclease-1 protein level is associated with the cytotoxicity of L-configuration deoxycytidine analogs (troxacitabine and β-L-2′,3′-dideoxy-2′,3′-didehydro-5-fluorocytidine) but not D-configuration deoxycytidine analogs (gemcitabine and β-D-arabinofuranosylcytosine), Mol. Pharmacol., 69, 1607-1614, https://doi.org/10.1124/mol.105.021527.

    Article  CAS  PubMed  Google Scholar 

  38. Dyrkheeva, N. S., Khodyreva, S. N., Sukhanova, M. V., Safronov, I. V., Dezhurov, S. V., et al. (2006) 3′-5′ exonuclease activity of human apurinic/apyrimidinic endonuclease 1 towards DNAs containing dNMP and their modified analogs at the 3′ end of single strand DNA break, Biochemistry (Moscow), 71, 200-210, https://doi.org/10.1134/S0006297906020131.

    Article  CAS  Google Scholar 

  39. Dyrkheeva, N. S., Khodyreva, S. N., and Lavrik, O. I. (2008) Quantitative parameters of the 3′-5′ exonuclease reaction of human apurinic/apyrimidinic endonuclease 1 with nicked DNA containing dYMP or a modified dCMP analogue, Russ. J. Bioorg. Chem., 34, 192-200, https://doi.org/10.1134/S1068162008020088.

    Article  CAS  Google Scholar 

  40. Dyrkheeva, N. S., Lebedeva, N. A., Sherstyuk, Y. V., Abramova, T. V., Silnikov, V. N., et al. (2018) Excision of carbohydrate-modified dNMP analogues from DNA 3′ end by human apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), Mol. Biol. (Mosk), 52, 922-928, https://doi.org/10.1134/S0026893318060067.

    Article  CAS  Google Scholar 

  41. Lin, Y., Raj, J., Li, J., Ha, A., Hossain, M. A., et al. (2020) APE1 senses DNA single-strand breaks for repair and signaling, Nucleic Acids Res., 48, 1925-1940, https://doi.org/10.1093/nar/gkz1175.

    Article  CAS  PubMed  Google Scholar 

  42. Strauss, P. R., Beard, W. A., Patterson, T. A., and Wilson, S. H. (1997) Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs–Haldane mechanism, J. Biol. Chem., 272, 1302-1307, https://doi.org/10.1074/jbc.272.2.1302.

    Article  CAS  PubMed  Google Scholar 

  43. Mantha, A. K., Oezguen, N., Bhakat, K. K., Izumi, T., Braun, W., et al. (2008) Unusual role of a cysteine residue in substrate binding and activity of human AP-endonuclease 1, J. Mol. Biol., 379, 28-37, https://doi.org/10.1016/j.jmb.2008.03.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kanazhevskaya, L. Y., Koval, V. V., Zharkov, D. O., Strauss, P. R., and Fedorova, O. S. (2010) Conformational transitions in human AP endonuclease 1 and its active site mutant during abasic site repair, Biochemistry, 49, 6451-6461, https://doi.org/10.1021/bi100769k.

    Article  CAS  PubMed  Google Scholar 

  45. Adhikari, S., Manthena, P. V., Kota, K. K., Karmahapatra, S. K., Roy, G., et al. (2012) A comparative study of recombinant mouse and human apurinic/apyrimidinic endonuclease, Mol. Cell. Biochem., 362, 195-201, https://doi.org/10.1007/s11010-011-1142-5.

    Article  CAS  PubMed  Google Scholar 

  46. Maher, R. L., and Bloom, L. B. (2007) Pre-steady-state kinetic characterization of the AP endonuclease activity of human AP endonuclease 1, J. Biol. Chem., 282, 30577-30585, https://doi.org/10.1074/jbc.M704341200.

    Article  CAS  PubMed  Google Scholar 

  47. Schermerhorn, K. M., and Delaney, S. (2013) Transient-state kinetics of apurinic/apyrimidinic (AP) endonuclease 1 acting on an authentic AP site and commonly used substrate analogs: The effect of diverse metal ions and base mismatches, Biochemistry, 52, 7669-7677, https://doi.org/10.1021/bi401218r.

    Article  CAS  PubMed  Google Scholar 

  48. Gros, L., Ishchenko, A. A., Ide, H., Elder, R. H., and Saparbaev, M. K. (2004) The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway, Nucleic Acids Res., 32, 73-81, https://doi.org/10.1093/nar/gkh165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, S.-E., Gorrell, A., Rader, S. D., and Lee, C. H. (2010) Endoribonuclease activity of human apurinic/apyrimidinic endonuclease 1 revealed by a real-time fluorometric assay, Anal. Biochem., 398, 69-75, https://doi.org/10.1016/j.ab.2009.11.024.

    Article  CAS  PubMed  Google Scholar 

  50. Mol, C. D., Izumi, T., Mitra, S., and Tainer, J. A. (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination, Nature, 403, 451-456, https://doi.org/10.1038/35000249.

    Article  CAS  PubMed  Google Scholar 

  51. Tsutakawa, S. E., Shin, D. S., Mol, C. D., Izumi, T., Arvai, A. S., et al. (2013) Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes, J. Biol. Chem., 288, 8445-8455, https://doi.org/10.1074/jbc.M112.422774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Freudenthal, B. D., Beard, W. A., Cuneo, M. J., Dyrkheeva, N. S., and Wilson, S. H. (2015) Capturing snapshots of APE1 processing DNA damage, Nat. Struct. Mol. Biol., 22, 924-931, https://doi.org/10.1038/nsmb.3105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Whitaker, A. M., Flynn, T. S., and Freudenthal, B. D. (2018) Molecular snapshots of APE1 proofreading mismatches and removing DNA damage, Nat. Commun., 9, 399, https://doi.org/10.1038/s41467-017-02175-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fairlamb, M. S., Whitaker, A. M., and Freudenthal, B. D. (2018) Apurinic/apyrimidinic (AP) endonuclease 1 processing of AP sites with 5′ mismatches, Acta Crystallogr. D Struct. Biol., 74, 760-768, https://doi.org/10.1107/S2059798318003340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Whitaker, A. M., Stark, W. J., Flynn, T. S., and Freudenthal, B. D. (2020) Molecular and structural characterization of disease-associated APE1 polymorphisms, DNA Repair, 91-92, 102867, https://doi.org/10.1016/j.dnarep.2020.102867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nathan, D., and Crothers, D. M. (2002) Bending and flexibility of methylated and unmethylated EcoRI DNA, J. Mol. Biol., 316, 7-17, https://doi.org/10.1006/jmbi.2001.5247.

    Article  CAS  PubMed  Google Scholar 

  57. Teng, X., and Hwang, W. (2018) Effect of methylation on local mechanics and hydration structure of DNA, Biophys. J., 114, 1791-1803, https://doi.org/10.1016/j.bpj.2018.03.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Prasad, R., Beard, W. A., Strauss, P. R., and Wilson, S. H. (1998) Human DNA polymerase β deoxyribose phosphate lyase: substrate specificity and catalytic mechanism, J. Biol. Chem., 273, 15263-15270, https://doi.org/10.1074/jbc.273.24.15263.

    Article  CAS  PubMed  Google Scholar 

  59. Sobol, R. W., Prasad, R., Evenski, A., Baker, A., Yang, X.-P., et al. (2000) The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity, Nature, 405, 807-810, https://doi.org/10.1038/35015598.

    Article  CAS  PubMed  Google Scholar 

  60. Hoheisel, J. D., Craig, A. G., and Lehrach, H. (1990) Effect of 5-bromo- and 5-methyldeoxycytosine on duplex stability and discrimination of the NotI octadeoxynucleotide: quantitative measurements using thin-layer chromatography, J. Biol. Chem., 265, 16656-16660, https://doi.org/10.1016/S0021-9258(17)46271-5.

    Article  CAS  PubMed  Google Scholar 

  61. Lebedev, Y., Akopyants, N., Azhikina, T., Shevchenko, Y., Potapov, V., et al. (1996) Oligonucleotides containing 2-aminoadenine and 5-methylcytosine are more effective as primers for PCR amplification than their nonmodified counterparts, Genet. Anal., 13, 15-21, https://doi.org/10.1016/1050-3862(96)00139-8.

    Article  CAS  PubMed  Google Scholar 

  62. Menoni, H., Gasparutto, D., Hamiche, A., Cadet, J., Dimitrov, S., et al. (2007) ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A. Bbd nucleosomes, Mol. Cell. Biol., 27, 5949-5956, https://doi.org/10.1128/MCB.00376-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Azzouz, D., Khan, M. A., and Palaniyar, N. (2021) ROS induces NETosis by oxidizing DNA and initiating DNA repair, Cell Death Discov., 7, 113, https://doi.org/10.1038/s41420-021-00491-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xanthoudakis, S., Miao, G., Wang, F., Pan, Y.-C. E., and Curran, T. (1992) Redox activation of Fos–Jun DNA binding activity is mediated by a DNA repair enzyme, EMBO J., 11, 3323-3335, https://doi.org/10.1002/j.1460-2075.1992.tb05411.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carrero, P., Okamoto, K., Coumailleau, P., O’Brien, S., Tanaka, H., et al. (2000) Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α, Mol. Cell. Biol., 20, 402-415, https://doi.org/10.1128/MCB.20.1.402-415.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ando, K., Hirao, S., Kabe, Y., Ogura, Y., Sato, I., et al. (2008) A new APE1/Ref-1-dependent pathway leading to reduction of NF-κB and AP-1, and activation of their DNA-binding activity, Nucleic Acids Res., 36, 4327-4336, https://doi.org/10.1093/nar/gkn416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fleming, A. M., Ding, Y., and Burrows, C. J. (2017) Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair, Proc. Natl. Acad. Sci. USA, 114, 2604-2609, https://doi.org/10.1073/pnas.1619809114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, Z. J., Martínez Cuesta, S., van Delft, P., and Balasubramanian, S. (2019) Sequencing abasic sites in DNA at single-nucleotide resolution, Nat. Chem., 11, 629-637, https://doi.org/10.1038/s41557-019-0279-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fang, Y., and Zou, P. (2020) Genome-wide mapping of oxidative DNA damage via engineering of 8-oxoguanine DNA glycosylase, Biochemistry, 59, 85-89, https://doi.org/10.1021/acs.biochem.9b00782.

    Article  CAS  PubMed  Google Scholar 

  70. Gorini, F., Scala, G., Di Palo, G., Dellino, G. I., Cocozza, S., et al. (2020) The genomic landscape of 8-oxodG reveals enrichment at specific inherently fragile promoters, Nucleic Acids Res., 48, 4309-4324, https://doi.org/10.1093/nar/gkaa175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roychoudhury, S., Pramanik, S., Harris, H. L., Tarpley, M., Sarkar, A., et al. (2020) Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome, Proc. Natl. Acad. Sci. USA, 117, 11409-11420, https://doi.org/10.1073/pnas.1912355117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project 17-14-01190P, biochemical experiments) and State Budget Project 0245-2021-0002 (structural analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry O. Zharkov.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endutkin, A.V., Yatsenko, D.D. & Zharkov, D.O. Effect of DNA Methylation on the 3′→5′ Exonuclease Activity of Major Human Abasic Site Endonuclease APEX1. Biochemistry Moscow 87, 10–20 (2022). https://doi.org/10.1134/S0006297922010023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922010023

Keywords

Navigation