Skip to main content
Log in

Nanohybrid Structures Based on Plasmonic or Fluorescent Nanoparticles and Retinal-Containing Proteins

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Rhodopsins are light-sensitive membrane proteins enabling transmembrane charge separation (proton pump) on absorption of a light quantum. Bacteriorhodopsin (BR) is a transmembrane protein from halophilic bacteria that belongs to the rhodopsin family. Potential applications of BR are considered so promising that the number of studies devoted to the use of BR itself, its mutant variants, as well as hybrid materials containing BR, in various areas grows steadily. Formation of hybrid structures combining BR with nanoparticles is an essential step in promotion of BR-based devices. However, rapid progress, continuous emergence of new data, as well as challenges of analyzing the entire data require regular reviews of the achievements in this area. This review is devoted to the issues of formation of materials based on hybrids of BR with fluorescent semiconductor nanocrystals (quantum dots) and with noble metal (silver, gold) plasmonic nanoparticles. Recent data on formation of thin (mono-) and thick (multi-) layers from materials containing BR and BR/nanoparticle hybrids are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AgNPs:

silver nanoparticles

BLM:

bilayer (black) lipid membranes

BR:

bacteriorhodopsin

FRET:

Förster resonance energy transfer

ITO:

indium-tin oxide

LB:

Langmuir-Blodgett (films)

MC:

methylcellulose

PEDOT: PSS:

poly(3,4-ethylenedioxythiophene):poly(styrenesulfo-nate)

PM:

purple membrane

PolyDADMAC:

poly(diallyl-dimethylammonium) chloride

PVATM:

polyvinyl alcohol type matrix

PVP:

polyvinylpyrrolidone

QD:

quantum dots

RS:

Raman scattering

SERS:

surface enhanced Raman spec-troscopy

References

  1. Birge, R. R. (1990) Photophysics and molecular electronic applications of the rhodopsins, Ann. Rev. Phys. Chem., 41, 683–733.

    Article  CAS  Google Scholar 

  2. Haupts, U., Tittor, J., and Oesterhelt, D. (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule, Ann. Rev. Biophys., 28, 367–399.

    CAS  Google Scholar 

  3. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J. Mol. Biol., 213, 899–929.

    Article  CAS  PubMed  Google Scholar 

  4. Hong, F. T. (1999) Interfacial photochemistry of retinal proteins, Recent Prog. Surf. Sci., 62, 1–237.

    Article  CAS  Google Scholar 

  5. Jin, Y., Honig, T., Ron, I., Friedman, N., Sheves, M., and Cahen, D. (2008) Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics, Chem. Soc. Rev., 37, 2422–2432.

    Article  CAS  PubMed  Google Scholar 

  6. Oesterhelt, D. (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea, Curr. Opin. Struct. Biol., 8, 489–500.

    Article  CAS  PubMed  Google Scholar 

  7. Subramaniam, S., and Henderson, R. (2000) Molecular mechanism of vectorial proton translocation by bacterio-rhodopsin, Nature, 406, 653–657.

    Article  CAS  PubMed  Google Scholar 

  8. Wise, K. J., Gillespie, N. B., Stuart, J. A., Krebs, M. P., and Birge, R. R. (2002) Optimization of bacteriorhodopsin for bioelectronic devices, Trends Biotechnol., 20, 387–394.

    Article  CAS  PubMed  Google Scholar 

  9. Lavoie, H., Gallant, J., Grandbois, M., Blaudez, D., Desbat, B., Boucher, F., and Salesse, C. (1999) The behavior of membrane proteins in monolayers at the gas-water interface: comparison between photosystem II, rhodopsin and bacteriorhodopsin, Materials Sci. Eng. C. Materials Biol. Appl., 10, 147–154.

    Article  Google Scholar 

  10. Niemeyer, C. M., and Mirkin, C. A. (2004) Nanobiotech-nology, Wiley-VCH, Weinheim.

    Google Scholar 

  11. Vsevolodov, N. (1998) Biomolecular Electronics: An Introduction via Photosensitive Proteins, Birkhauser Boston, Boston.

    Book  Google Scholar 

  12. Hasegawa, N., Jonotsuka, H., Miki, K., and Takeda, K. (2018) X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution, Sci. Rep., 8, 13123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Adamov, G. E., Devyatkov, A. G., Gnatyuk, L. N., Goldobin, I. S., and Grebennikov, E. P. (2008) Bacterio-rhodopsin - perspective biomaterial for molecular nano-photonics, J. Photochem. Photobiol. A Chem., 196, 254–261.

    Article  CAS  Google Scholar 

  14. Audette, G. F., Lombardo, S., Dudzik, J., Arruda, T. M., Kolinski, M., Filipek, S., Mukerjee, S., Kannan, A. M., Thavasi, V., Ramakrishna, S., Chin, M., Somasundaran, P., Viswanathan, S., Keles, R. S., and Renugopalakrishnan, V. (2011) Protein hot spots at bio-nano interfaces, Materials Today, 14, 360–365.

    Article  CAS  Google Scholar 

  15. Oesterhelt, D., and Stoeckenius, W. (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halo-bium, Nat. New Biol., 233, 149–152.

    Article  CAS  PubMed  Google Scholar 

  16. Rubin, A. B. (2000) Biophysics [in Russian], MGU Publishers, Moscow, pp. 388–424.

    Google Scholar 

  17. Li, Y.-T., Tian, Y., Tian, H., Tu, T., Gou, G.-Y., Wang, Q., and Ren, T.-L. (2018). A review on bacteriorhodopsin-based bioelectronic devices, Sensors, 18, 1368.

    Article  CAS  PubMed Central  Google Scholar 

  18. Mahyad, B., Janfaza, S., and Hosseini, E. S. (2015) Bio-nano hybrid materials based on bacteriorhodopsin: potential applications and future strategies, Adv. Colloid Interface Sci., 225, 194–202.

    Article  CAS  PubMed  Google Scholar 

  19. Radionov, A. N., and Kaulen, A. D. (1995) Cooperative phenomena in the photocycle of D96N mutant bacterio-rhodopsin, FEBS Lett., 377, 330–332.

    Article  CAS  PubMed  Google Scholar 

  20. Zaitsev, S. Yu. (2010) Supramolecular Nanoscale Systems at the Interface. Concepts and Prospects for Nanobiotechnology [in Russian], LENAND, Moscow.

    Google Scholar 

  21. Boucher, J., Trudel, E., Methot, M., Desmeules, P., and Salesse, C. (2007) Organization, structure and activity of proteins in monolayers, Colloids Surf. B Biointerfaces, 58, 73–90.

    Article  CAS  PubMed  Google Scholar 

  22. Zaitsev, S. Yu., Solovieva, D. O., and Nabiev, I. R. (2014) Nano-biohybrid structures based on organized films of photosensitive membrane proteins, Russ. Chem. Rev., 83, 38–81.

    Article  CAS  Google Scholar 

  23. Drachev, A. L., Drachev, L. A., Kaulen, A. D., and Khitrina, L. V. (1984) The action of lanthanum ions and formaldehyde on the proton-pumping function of bacterio-rhodopsin, Eur. J. Biochem., 138, 349–356.

    Article  CAS  PubMed  Google Scholar 

  24. Furuno, T., and Sasabe, H. (1991) Denaturation of purple membranes at the air/water interface studied by SEM, J. Colloid Interface Sci., 147, 225–232.

    Article  CAS  Google Scholar 

  25. Sukhanova, A., Even-Desrumeaux, K., Kisserli, A., Tabary, T., Reveil, B., Millot, J. M., Chames, P., Baty, D., Artemyev, M., Oleinikov, V., Pluot, M., Cohen, J. H., and Nabiev, I. (2012) Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes, Nanomedicine, 8, 516–525.

    Article  CAS  PubMed  Google Scholar 

  26. Takei, H., Lewis, A., Chen, Z., and Nebenzahl, I. (1991) Implementing receptive fields with excitatory and inhibitory optoelectrical responses of bacteriorhodopsin films, Appl. Opt., 30, 500–509.

    Article  CAS  PubMed  Google Scholar 

  27. Thavasi, V., Lazarova, T., Filipek, S., Kolinski, M., Querol, E., Kumar, A., Ramakrishna, S., Padros, E., and Renugopalakrishnan, V. (2009) Study on the feasibility of bacteriorhodopsin as bio-photosensitizer in excitonic solar cell: a first report, J. Nanosci. Nanotech., 9, 1679–1687.

    Article  CAS  Google Scholar 

  28. Tittor, J., Schweiger, U., Oesterhelt, D., and Bamberg, E. (1994) Inversion of proton translocation in bacterio-rhodopsin mutants D85N, D85T, and D85,96N, Biophys. J., 67, 1682–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tkachenko, N. V. (2006) Optical Spectroscopy: Methods and Instrumentations, Amsterdam, Elsevier.

    Google Scholar 

  30. Toth-Boconadi, R., Der, A., and Keszthelyi, L. (2011) Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins, Bioelectrochemistry, 81, 17–21.

    Article  CAS  PubMed  Google Scholar 

  31. Ulman, A. (1991) An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-assembly, Academic Press Inc, Boston.

    Google Scholar 

  32. Weetall, H., and Samuelson, L. A. (1998) Optical and electrical-properties of bacteriorhodopsin Langmuir-Blodgett films, Thin Solid Film., 312, 306–312.

    Article  CAS  Google Scholar 

  33. Methot, M., Desmeules, P., Vaknin, D., Boucher, F., and Salesse, C. (2004) In situ characterization of functional purple membrane monolayers at the air-water interface, Langmuir, 20, 934–940.

    Article  CAS  PubMed  Google Scholar 

  34. Weetall, H. H. (1994) D96N mutant bacteriorhodopsin immobilized in sol-gel glass characterization, Appl. Biochem. Biotech., 49, 241256.

    Article  Google Scholar 

  35. Xu, H., Bjerneld, E. J., Kall, M., and Borjesson, L. (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett., 83, 4357–4360.

    Article  CAS  Google Scholar 

  36. Yen, C.-W., Hayden, S. C., Dreaden, E. C., Szymanski, P., and El-Sayed, M. A. (2011) Tailoring plasmonic and electrostatic field effects to maximize solar energy conversion by bacteriorhodopsin, the other natural photosynthetic system, Nano Lett., 11, 3821–3826.

    Article  CAS  PubMed  Google Scholar 

  37. Yen, C. W., Chu, L. K., and El-Sayed, M. (2010) Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle, J. Am. Chem. Soc., 132, 7250–7251.

    Article  CAS  PubMed  Google Scholar 

  38. Zaitsev, S. Y., Kozhevnikov, N. M., Barmenkov, Yu. O., and Lipovskaya, M. Yu. (1992) Kinetics of dynamic hologram recording in polymer films with immobilized bacterio-rhodopsin, Photochem. Photobiol., 55, 851–856.

    Article  CAS  Google Scholar 

  39. Zaitsev, S. Y., Lukashev, E. P., Solovyeva, D. O., Chistyakov, A. A., and Oleinikov, V. A. (2014) Controlled influence of quantum dots on purple membranes at interfaces, Colloids Surf. B Biointerfaces, 117, 248–251.

    Article  CAS  PubMed  Google Scholar 

  40. Zaitsev, S. Y., Solovyeva, D. O., and Nabiev, I. (2012) Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties, Adv. Colloid Interface Sci., 183-184, 14–29.

    Article  CAS  PubMed  Google Scholar 

  41. Pepe, I. M., Ram, M. K., Paddeu, S., and Nicolini, C. (1998) Langmuir-Blodgett films of rhodopsin: an infrared spectroscopic study, Thin Solid Films, 327, 118–122.

    Article  Google Scholar 

  42. Dolfi, A., Tadini, B. F., Moncelli, M. R., and Guidelli, R. (2002) DC photoelectric signals from bacteriorhodopsin adsorbed on lipid monolayers and thiol/lipid bilayers supported by mercury, Bioelectrochemistry, 56, 151–156.

    Article  CAS  PubMed  Google Scholar 

  43. Dolfi, A., Tadini-Buoninsegni, F., Moncelli, M. R., and Guidelli, R. (2002) Photocurrents generated by bacterio-rhodopsin adsorbed on thiol/lipid bilayers supported by mercury, Langmuir, 15, 6345–6355.

    Article  CAS  Google Scholar 

  44. Ganea, C., Tittorc, J., Bamberga, E., and Oesterhelt, D. (1998) Chloride- and pH-dependent proton transport by BR mutant D85N, Biochim. Biophys. Acta Biomembranes, 1368, 84–96.

    Article  CAS  Google Scholar 

  45. Horn, C., and Tailoring, C. (2005) Steinem photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes, Biophys. J., 89, 1046–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Der, A., and Keszthelyi, L. (2001) Bioelectronic Applications of Photochromic Pigments, NATO Science Series, IOS Press, Amsterdam.

    Google Scholar 

  47. Chen, Z., Lewis, A., Takei, H., and Nebenzahl, I. (1991) Bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium, Appl. Opt., 30, 5188–5196.

    Article  CAS  PubMed  Google Scholar 

  48. Manoj, A. G., and Narayan, K. S. (2003) Voltage-controlled spectral tuning of photoelectric signals in a conducting polymer-bacteriorhodopsin device, Appl. Phys. Lett., 83, 3614–3616.

    Article  CAS  Google Scholar 

  49. Manoj, A. G., and Narayan, K. S. (2004) Opto-electrical processes in a conducting polymer-bacteriorhodopsin system, Biosens. Bioelectron., 19, 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  50. Rakovich, A., Donegan, J. F., Oleinikov, V., Molinari, M., Sukhanova, A., Nabiev, I., and Rakovich, Y. P. (2014) Linear and nonlinear optical effects induced by energy transfer from semiconductor nanoparticles to photosyn-thetic biological systems, J. Photochem. Photobiol. C. Photochem. Rev., 20, 17–32.

    Article  CAS  Google Scholar 

  51. Oleynikov, V. A., Sukhanova, A. V., and Nabiev, I. R. (2007) Fluorescent semiconductor nanocrystals for biology and medicine, Russ. Nanotechnol., 2, 160–173.

    Google Scholar 

  52. Nabiev, I., Sukhanova, A., Artemyev, M., and Oleinikov, V. (2008) Fluorescent colloidal particles as detection tools in biotechnology systems, in Colloidal Nanoparticles in Biotechnology, WILEY-VCH, London-Singapore-NY, pp. 133–168.

    Chapter  Google Scholar 

  53. Vasiliev, R. B., Dirin, D. N., and Gaskov, A. (2011) Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties, Russ. Chem. Rev., 80, 1139–1158.

    Article  CAS  Google Scholar 

  54. Zaitsev, S. Yu., Maak, Yu., Mebius, D., and Zubov, V. P. (1994) Photoinduced changes in the monolayers of bacterio-rhodopsin studied by the Brewster angle reflection technique, Biol. Membr. (Moscow), 11, 461–464.

    CAS  Google Scholar 

  55. Kocherginskaya, P. B., Romanova, A. V., Prokhorenko, I. A., Itkis, D. M., Korshun, V. A., Gudilin, E. A., and Tretyakov, Yu. D. (2011) Modification of quantum dots with nucleic acids, Russ. Chem. Rev., 80, 1209–1221.

    Article  CAS  Google Scholar 

  56. Krutyakov, Yu. A., Kudrinskiy, A. A., Olenin, A. Yu., and Lisichkin, G. V. (2008) Synthesis and properties of silver nanoparticles: advances and prospects, Russ. Chem. Rev., 77, 233–257.

    Article  CAS  Google Scholar 

  57. Oleinikov, V. A., Mochalov, K. E., Solovieva, D. O., Chistyakov, A. A., Lukashev, E. P., and Nabiev, I. R. (2016) The effect of silver nanoparticles on the photocycle of bac-teriorhodopsim of purple membranes of Halobacterium salinarum, Opt. Spectrosc., 121, 210–219.

    Article  CAS  Google Scholar 

  58. Oleinikov, V. A., Sukhanova, A. V., and Nabiev, I. R. (2007) Fluorescent semiconductor nanocrystals in biology and medicine, Ross. Nanotechnol., 2, 160–173.

    Google Scholar 

  59. Biesso, A., Qian, W., Huang, X., and El-Sayed, M. A. (2009) Gold nanoparticles surface plasmon field effects on the proton pump process of the bacteriorhodopsin photosynthesis, J. Am. Chem. Soc., 131, 2442–2443.

    Article  CAS  PubMed  Google Scholar 

  60. Biesso, A., Qian, W., Huang, X., and El-Sayed, M. A. (2009) Gold nanoparticle plasmonic field effect on the primary step of the other photosynthetic system in nature, bacteriorhodopsin, J. Am. Chem. Soc., 130, 3258–3259.

    Article  CAS  Google Scholar 

  61. Biesso, A., Xu, J., Muino, P. L., Callis, P. R., and Knutson, J. R. (2014) Charge invariant protein-water relaxation in GB1 via ultrafast tryptophan fluorescence, J. Am. Chem. Soc., 136, 2739–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Biesso, A., Zhao, Z., Wang, P., Xu, X., Sheves, M., and Jin, Y. (2015) Bacteriorhodopsin/Ag nanoparticle-based hybrid nano-bio electrocatalyst for efficient and robust H2 evolution from water, J. Am. Chem. Soc., 137, 2840–2843.

    Article  CAS  Google Scholar 

  63. Rakovich, A., Sukhanova, A., Bouchonville, N., Lukashev, E., Oleinikov, V., Artemyev, M., Lesnyak, V., Gaponik, N., Molinari, M., Troyon, M., Rakovich, Y. P., Donegan, J. F., and Nabiev, I. (2010) Resonance energy transfer improves the biological function of bacterio-rhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots, Nano Lett., 10, 2640–2648.

    Article  CAS  PubMed  Google Scholar 

  64. Bouchonville, N., Molinari, M., Sukhanova, A., Artemyev, M., Oleinikov, V. A., Troyon, M., and Nabiev, I. (2011) Charge-controlled assembling of bacteriorhodopsin and semiconductor quantum dots for fluorescence resonance energy transfer-based nanophotonic applications, Appl. Phys. Lett., 98, 2–4.

    Article  CAS  Google Scholar 

  65. Clapp, A. R., Medintz, I. L., and Mattoussi, H. (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores, ChemPhysChem, 7, 47–57.

    Article  CAS  PubMed  Google Scholar 

  66. Elaissari, A. (2006) Colloidal Nanoparticles in Biotechnology, John Wiley & Sons, Chichester.

    Google Scholar 

  67. Hardzei, M., Artemyev, M., Molinari, M., Troyon, M., Sukhanova, A., and Nabiev, I. (2012) Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules, ChemPhysChem, 13, 330–335.

    Article  CAS  PubMed  Google Scholar 

  68. Li, R., Li, C. M., Bao, H., Bao, Q., and Lee, V. S. (2007) Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem, Appl. Phys. Lett., 91, 7–10.

    Google Scholar 

  69. Nabiev, I., Rakovich, A., Sukhanova, A., Lukashev, E., Zagidullin, V., Pachenko, V., Rakovich, Y. P., Donegan, J. F., Rubin, A. B., and Govorov, A. O. (2010) Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers, Angew. Chem., 49, 7217–7221.

    Article  Google Scholar 

  70. Chu, L.-K., Yen, C.-W., and El-Sayed, M. A. (2010) On the mechanism of the plasmonic field enhancement of the solar-to-electric energy conversion by the other photosyn-thetic system in nature (bacteriorhodopsin): kinetic and spectroscopic study, J. Phys. Chem. C, 114, 15358–15363.

    Article  CAS  Google Scholar 

  71. Friedrich, C., Lueking, D., and Griep, M. (2008) Bacteriorhodopsin-based sensors, US Patent 2009/0142852.

    Google Scholar 

  72. Griep, M., Winder, E., Lueking, D., Friedrich, C., Mallick, G., and Karna, S. (2010) Optical protein modulation via quantum dot coupling and use of a hybrid sensor protein, J. Nanosci. Nanotech., 10, 60296035.

    Article  CAS  Google Scholar 

  73. Griep, M. H., Walczak, K. A., Winder, E. M., Lueking, D. R., and Friedrich, C. R. (2010) Quantum dot enhancement of bacteriorhodopsin-based electrodes, Biosens. Bioelectron., 25, 1493–1497.

    Article  CAS  PubMed  Google Scholar 

  74. Griep, M. H., Winder, E. M., Lueking, D. R., Garrett, G. A., Karna, S. P., and Friedrich, C. R. (2012) Förster resonance energy transfer between core/shell quantum dots and bacteriorhodopsin, Mol. Biol. Int., 2012, 1–7.

    Article  CAS  Google Scholar 

  75. Patil, A. V., Premaruban, V. T., Berthoumieu, O., Watts, A., and Davis, J. J. (2012) Enhanced photocurrent in engineered bacteriorhodopsin monolayer, J. Phys. Chem. B, 116, 683–689.

    Article  CAS  PubMed  Google Scholar 

  76. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D. (2010) Solar cell efficiency tables (version 36), Prog. Photovoltaics, 18, 346–352.

    Article  Google Scholar 

  77. Stuart, J., Marcy, D. L., Wise, K. J., and Birge, R. R. (2002) Volumetric optical memory based on bacterio-rhodopsin, Synth. Met., 127, 3–15.

    Article  CAS  Google Scholar 

  78. Chang, R. K., and Furtak, T. (1982) Surface Enhanced Raman Scattering, Plenum Press, New York.

    Book  Google Scholar 

  79. Boyd, G. T., Rasing, Th., Leite, J. R. R., and Shen, Y. R. (1984) Local-field enhancement on rough surfaces of metal, semimetals, and semiconductors with the use of optical second-harmonic generation, Phys. Rev. B, 30, 519–526.

    Article  CAS  Google Scholar 

  80. Barber, P. W., Chang, R. K., and Massoudi, H. (1983) Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids, Phys. Rev. B, 27, 7251–7261.

    Article  CAS  Google Scholar 

  81. Ermushev, A. V., Mchedlishvili, B. V., Oleinikov, V. A., and Petukhov, A. V. (1993) Surface enhancement of optical fields and the lightning-rod effect, Quantum Electron., 23, 435–440.

    Article  Google Scholar 

  82. Johnson, P. B., and Christy, R. W. (1972) Optical constants of the noble metals, Phys. Rev. B, 6, 4370–4379.

    Article  CAS  Google Scholar 

  83. Kudelina, I. A., Murzina, T. V., Mchedlishvili, B. V., Oleinikov, V. A., Petukhov, A. V., and Sokolov, K. V. (1991) Local plasmon resonances of hollow metal cylinders used on surface enhanced Raman scattering and surface enhanced second harmonic generation, Poverkhnost. Fiz. Khim. Mekhan., 10, 75–80.

    Google Scholar 

  84. Yen, C.-W., Hayden, S. C., Dreaden, E. C., Szymanski, P., and El-Sayed, M. A. (2011) Tailoring plasmonic and electrostatic field effects to maximize solar energy conversion by bacteriorhodopsin, the other natural photosynthetic system, Nano Lett., 11, 3821–3826.

    Article  CAS  PubMed  Google Scholar 

  85. Adamov, G. E., Goldobin, I. S., Grebennikov, E. P., and Devyatkov, A. G. (2008) Hybrid nanostructures based on nanoparticles and bacteriorhodopsin, High Energy Chem., 42, 522–523.

    Article  CAS  Google Scholar 

  86. Zhao, Z., Wang, P., Xu, X., Sheves, M., and Jin, Y. (2015) Bacteriorhodopsin/Ag nanoparticle-based hybrid nano-bio electrocatalyst for efficient and robust H2 evolution from water, J. Am. Chem. Soc., 137, 2840–2843.

    Article  CAS  PubMed  Google Scholar 

  87. Renugopalakrishnan, V., Barbiellini, B., King, C., Molinari, M., Mochalov, K., Sukhanova, A., Nabiev, I., Fojan, P., Tuller, H. L., Chin, M., Somasundaran, P., Padros, E., and Ramakrishna, S. (2014) Engineering a robust photovoltaic device with quantum dots and bacterio-rhodopsin, J. Phys. Chem. C, 118, 16710–16717.

    Article  CAS  Google Scholar 

  88. Chu, J., Li, X., Zhang, J., and Tang, J. (2003) Fabrication and photoelectric response of poly(allylamine hydrochlo-ride)/PM thin films by layer-by-layer deposition technique, Biochem. Biophys. Res. Commun., 305, 116–121.

    Article  CAS  PubMed  Google Scholar 

  89. He, J., Samuelson, L., Li, L., Kumar, J., and Tripathy, S. K. (1998) Oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly, Langmuir, 7463, 1674–1679.

    Article  Google Scholar 

  90. He, J.-A., Samuelson, L., Li, L., Kumar, J., and Tripathy, S. K. (1998) Photoelectric properties of oriented bacterio-rhodopsin/polycation multilayers by electrostatic layer-by-layer assembly, J. Phys. Chem. B, 102, 7067–7072.

    Article  CAS  Google Scholar 

  91. Li, R., Cui, X., Hu, W., Lu, Z., and Li, C. (2010) Ming fabrication of oriented poly-l-lysine/bacteriorhodopsin-embed-ded purple membrane multilayer structure for enhanced photoelectric response, J. Colloid Interface Sci., 344, 150–157.

    Article  CAS  PubMed  Google Scholar 

  92. Miyasaka, T., and Koyama, K. (1992) Rectified photocurrents from purple membrane Langmuir-Blodgett films at the electrode-electrolyte interface, Thin Solid Films, 210, 146–149.

    Article  Google Scholar 

  93. Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.-S., and Chen, G. (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications, Drug Discov. Today, 20, 595–601.

    Article  CAS  PubMed  Google Scholar 

  94. Lee, S. H., and Jun, B.-H. (2019) Silver nanoparticles: synthesis and application for nanomedicine, Int. J. Mol. Sci., 20, E865.

    Article  PubMed  CAS  Google Scholar 

  95. Le Ru, E. C., Etchegoin, P. G., and Meyer, M. (2006) Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection, J. Chem. Phys., 125, 204701.

    Article  CAS  PubMed  Google Scholar 

  96. Oesterhelt, D., and Stoeckenius, W. (1974) Isolation of the cell membrane of Halobacterium halobium and its fraction-ation into red and purple membrane, Methods Enzymol., 31, 667–678.

    Article  CAS  PubMed  Google Scholar 

  97. Smith, S. O., Lugtenburg, J., and Mathies, R. A. (1985) Determination of retinal chromophore structure in bacterio-rhodopsin with resonance Raman spectroscopy, J. Membr. Biol., 85, 95–109.

    Article  CAS  PubMed  Google Scholar 

  98. Nabiev, I. R., Chumanov, G. D., and Efremov, R. G. (1990) Surface-enhanced Raman spectroscopy of biomolecules. Part II. Application of short- and long-range components of SERS to the study of the structure and function of membrane proteins, J. Raman Spectrosc., 21, 49–53.

    Article  CAS  Google Scholar 

  99. Saito, S., and Tasumi, M. (1983) Normal-coordinate analysis of retinal isomers and assignments of Raman and infrared bands, J. Raman Spectrosc., 14, 236–245.

    Article  CAS  Google Scholar 

Download references

Funding

Funding. This work was financially supported by the Russian Science Foundation (grant 19-14-00171, V.A.O. and D.O.S) and by the Russian Foundation for Basic Research (grant 17-00-00394, S.Yu.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Oleinikov.

Ethics declarations

Ethical approval. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial or in any other area.

Russian Text © The Author(s), 2020, published in Uspekhi Biologicheskoi Khimii, 2020, Vol. 60, pp. 411-444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleinikov, V.A., Solovyeva, D.O. & Zaitsev, S.Y. Nanohybrid Structures Based on Plasmonic or Fluorescent Nanoparticles and Retinal-Containing Proteins. Biochemistry Moscow 85 (Suppl 1), 196–212 (2020). https://doi.org/10.1134/S0006297920140102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920140102

Keywords

Navigation