Skip to main content
Log in

Interaction of Chloramphenicol Cationic Peptide Analogues with the Ribosome

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Virtual screening of all possible tripeptide analogues of chloramphenicol was performed using molecular docking to evaluate their affinity to bacterial ribosomes. Chloramphenicol analogues that demonstrated the lowest calculated energy of interaction with ribosomes were synthesized. Chloramphenicol amine (CAM) derivatives, which contained specific peptide fragments from the proline-rich antimicrobial peptides were produced. It was demonstrated using displacement of the fluorescent erythromycin analogue from its complex with ribosomes that the novel peptide analogues of chloramphenicol were able to bind bacterial ribosome; all the designed tripeptide analogues and one of the chloramphenicol amine derivatives containing fragment of the proline-rich antimicrobial peptides exhibited significantly greater affinity to Escherichia coli ribosome than chloramphenicol. Correlation between the calculated and experimentally evaluated levels of the ligand efficiencies was observed. In vitro protein biosynthesis inhibition assay revealed, that the RAW-CAM analogue shows activity at the level of chloramphenicol. These data were confirmed by the chemical probing assay, according to which binding pattern of this analogue in the nascent peptide exit tunnel was similar to chloramphenicol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

Boc:

tert-butoxycarbonyl

BODIPY:

(4,4-difluoro-5,7-dimethyl-4-bora)-3a,4a-diaza-s-indacene-3-pentanoic acid

CAM:

chloramphenicol amine

CHL:

chloramphenicol

DIC:

N,N′-diisopropylcarbodiimide

DIPEA:

N,N-diisopropylethylamine

DMF:

N,N-dimethylformamide

DMS:

dimethyl sulfate

ERY:

erythromycin

Fmoc:

fluorenylmethoxycarbonyl

LC-MS:

liquid chromatography-mass spectrometry

MALDI TOF MS:

matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry

NPET:

ribosome nascent peptide exit tunnel

Onc112:

oncocin112 (VDKPPYLPRPRPPRrIYNr-NH2)

P :

2-chlorotrityl chloride resin

Pbf:

2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl

Pip:

piperidine

PrAMPs:

proline-rich antimicrobial peptides

PTC:

peptidyl transferase center

Reagent K:

TFA/phenol/H2O/thioanisole/β-mercaptoethanol = 82.5/5/5/5/2.5, v/v

TFA:

trifluoroacetic acid

REFERENCES

  1. Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, Science, 289, 905-920, doi: https://doi.org/10.1126/science.289.5481.905.

    Article  CAS  PubMed  Google Scholar 

  2. Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis, Science, 289, 920-930, doi: https://doi.org/10.1126/science.289.5481.920.

    Article  CAS  PubMed  Google Scholar 

  3. Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., et al. (2001) High resolution structure of the large ribosomal subunit from a Mesophilic Eubacterium, Cell, 107, 679-688, doi: https://doi.org/10.1016/s0092-8674(01)00546-3.

    Article  CAS  PubMed  Google Scholar 

  4. Bogdanov, A. A., Sumbatyan, N. V., Shishkina, A. V., Karpenko, V. V., and Korshunova, G. A. (2010) Ribosomal tunnel and translation regulation, Biochemistry (Moscow), 75, 1501-1516, doi: https://doi.org/10.1134/S0006297910130018.

    Article  CAS  Google Scholar 

  5. Duc, K. D., Batr, S. S., Bhattacharya, N., Cate, J. H. D., and Song, Y. S. (2019) Differences in the path to exit the ribosome across the three domains of life, Nucleic Acids Res., 47, 4198-4210, doi: https://doi.org/10.1093/nar/gkz106.

    Article  CAS  Google Scholar 

  6. Gupta, P., Liu, B., Klepacki, D., Gupta, V., Sschulten, K., Mankin, A., and Vázquez-Laslop, N. (2016) Nascent peptide assists the ribosome in recognizing chemically distinct small molecules, Nat. Chem. Biol., 12, 153-158, doi: https://doi.org/10.1038/nchembio.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilson, D. N., Arenz, S., and Beckmann, R. (2016) Translation regulation via nascent polypeptide-mediated ribosome stalling, Curr. Opin. Struct. Biol., 37, 123-133, doi: https://doi.org/10.1016/j.sbi.2016.01.008.

    Article  CAS  PubMed  Google Scholar 

  8. Gamerdinger, M., Kobayashi, K., Wallisch, A., Kreft, S. G., Sailer, C., et al. (2019) Early scanning of nascent polypeptides inside the ribosomal tunnel by NAC, Mol. Cell, 75, 996-1006, doi: https://doi.org/10.1016/j.molcel.2019.06.030.

    Article  CAS  PubMed  Google Scholar 

  9. Hansen, J. L., Moore, P. B., and Steitz, T. A. (2003) Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit, J. Mol. Biol., 330, 1061-1075, doi: https://doi.org/10.1016/s0022-2836(03)00668-5.

    Article  CAS  PubMed  Google Scholar 

  10. LaMarre, J., Mendes, R. E., Szal, T., Schwarz, S., Jones, R. N., and Mankin, A. S. (2013) The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L, Antimicrob. Agents Chemother., 57, 1173-1179, doi: https://doi.org/10.1128/AAC.02047-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vázquez-Laslop, N., Ramu, H., Klepacki, D., and Mankin, A. S. (2010) The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide, EMBO J., 29, 3108-3117, doi: https://doi.org/10.1038/emboj.2010.180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Polikanov, Y. S., Aleksashin, N. A., Beckert, B., and Wilson, D. N. (2018) The mechanisms of action of ribosome-targeting peptide antibiotics, Front. Mol. Biosci., 5, 48, doi: https://doi.org/10.3389/fmolb.2018.00048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arenz, S., Meydan, S., Starosta, A. L., Berninghausen, O., Beckmann, R., Vázquez-Laslop, N., and Wilson, D. N. (2014) Drug sensing by the ribosome induces translational arrest via active site perturbation, Mol. Cell, 56, 446-452, doi: https://doi.org/10.1016/j.molcel.2014.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arenz, S., Ramu, H., Gupta, P., Berninghausen, O., Beckmann, R., Vázquez-Laslop, N., Mankin, A. S., and Wilson, D. N. (2014) Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide, Nat. Commun., 5, 3501-3516, doi: https://doi.org/10.1038/ncomms4501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dunkle, J. A., Xiong, L., Mankin, A. S., and Cate, J. H. D. (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action, Proc. Natl. Acad. Sci. USA, 107, 17152-17157, doi: https://doi.org/10.1073/pnas.1007988107.

    Article  PubMed  Google Scholar 

  16. Roy, R. N., Lomakin, I. B., Gagnon, M. G., and Steitz, T. A. (2015) The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin, Nat. Struct. Mol. Biol., 22, 466-469, doi: https://doi.org/10.1038/nsmb.3031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seefeldt, A. C., Nguyen, F., Antunes, S., Pérébaskine, N., Graf, M., et al. (2015) The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex, Nat. Struct. Mol. Biol., 22, 470-475, doi: https://doi.org/10.1038/nsmb.3034.

    Article  CAS  PubMed  Google Scholar 

  18. Florin, T., Maracci, C., Graf, M., Karki, P., Klepacki, D., et al. (2017) An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome, Nat. Struct. Mol. Biol., 24, 752-757, doi: https://doi.org/10.1038/nsmb.3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pérébaskine, N., Gambato, S., Mardirossian, M., Hofmann, S., Müller, C., et al. (2018) The dolphin proline-rich antimicrobial peptide Tur1a inhibits protein synthesis by targeting the bacterial ribosome, Cell Chem. Biol., 25, 530-539, doi: https://doi.org/10.1016/j.chembiol.2018.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gagnon, M. G., Roy, R. N., Lomakin, I. B., Florin, T., Mankin, A. S., and Steitz, T. A. (2016) Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition, Nucleic Acids Res., 44, 2439-2450, doi: https://doi.org/10.1093/nar/gkw018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar, P., Kizhakkedathu, J., and Straus, S. (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo, Biomolecules, 8, 4-27, doi: https://doi.org/10.3390/biom8010004.

    Article  CAS  PubMed Central  Google Scholar 

  22. Mamos, P., Krokidis, M. G., Papadas, A., Karahalios, P., Starosta, A. L., et al. (2013) On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel, Biochimie, 95, 1765-1772, doi: https://doi.org/10.1016/j.biochi.2013.06.004.

    Article  CAS  PubMed  Google Scholar 

  23. Tereshchenkov, A. G., Shishkina, A. V., Tashlitsky, V. N., Korshunova, G. A., Bogdanov, A. A., and Sumbatyan, N. V. (2016) Interaction of chloramphenicol tripeptide analogues with the ribosome, Biochemistry (Moscow), 81, 392-400, doi: https://doi.org/10.1134/S000629791604009X.

    Article  CAS  Google Scholar 

  24. Tereshchenkov, A. G., Dobosz-Bartoszek, M., Osterman, I. A., Marks, J., Sergeeva, V. A., et al. (2018) Binding action of amino-acid analogues of chloramphenicol upon the bacterial ribosome, J. Mol. Biol., 430, 842-852, doi: https://doi.org/10.1016/j.jmb.2018.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Graf, M., Mardirossian, M., Nguyen, F., Seefeldt, A. C., Guichard, G., Scocchi, M., Innis, C. A., and Wilson, D. N. (2017) Proline-rich antimicrobial peptides targeting protein synthesis, Nat. Prod. Rep., 34, 702-711, doi: https://doi.org/10.1039/C7NP00020K.

    Article  CAS  PubMed  Google Scholar 

  26. Knappe, D., Ruden, S., Langanke, S., Tikkoo, T., Ritzer, J., et al. (2016) Optimization of oncocin for antibacterial activity using a SPOT synthesis approach: extending the pathogen spectrum to Staphylococcus aureus, Amino Acids, 48, 269-280, doi: https://doi.org/10.1007/s00726-015-2082-2.

  27. Li, J., Kim, I. H., Roche, E. D., Beeman, D., Lynch, A. S., Ding, C. Z., and Ma, Z. (2006) Design, synthesis, and biological evaluation of BODIPY®–erythromycin probes for bacterial ribosomes, Bioorg. Med. Chem. Lett., 16, 794-797, doi: https://doi.org/10.1016/j.bmcl.2005.11.028.

    Article  CAS  PubMed  Google Scholar 

  28. Ji, J., Chakraborty, A., Geng, M., Zhang, X., Amini, A., Bina, M., and Regnier, F. (2000) Strategy for qualitative and quantitative analysis in proteomics based on signature peptides, J. Chromatogr. B, 745, 197-210, doi: https://doi.org/10.1016/s0378-4347(00)00192-4.

    Article  CAS  Google Scholar 

  29. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011) Open babel: an open chemical toolbox, J. Cheminformatics, 3, 33, doi: https://doi.org/10.1186/1758-2946-3-33.

    Article  CAS  Google Scholar 

  30. Stewart, J. J. P. (2012) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters, J. Mol. Model., 19, 1-32, doi: https://doi.org/10.1007/s00894-012-1667-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trott, O., and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31, 455-461, doi: https://doi.org/10.1002/jcc.21334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alhossary, A., Handoko, S. D., Mu, Y., and Kwoh, C.-K. (2015) Fast, accurate, and reliable molecular docking with QuickVina 2, Bioinformatics, 31, 2214-2216, doi: https://doi.org/10.1093/bioinformatics/btv082.

    Article  CAS  PubMed  Google Scholar 

  33. Rebstock, M. C., Crooks, H. M., Controulis, J., and Bartz, Q. R. (1949) Chloramphenicol (chloromycetin). IV. Chemical studies, J. Am. Chem. Soc., 71, 2458-2462, doi: https://doi.org/10.1021/ja01175a065.

    Article  CAS  Google Scholar 

  34. Yan, K., Hunt, E., Berge, J., May, E., Copeland, R. A., and Gontarek, R. R. (2005) Fluorescence polarization method to characterize macrolide-ribosome interactions, Antimicrob. Agents Chemother., 49, 3367-3372, doi: https://doi.org/10.1128/AAC.49.8.3367-3372.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Z. X. (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule, FEBS Lett., 360, 111-114, doi: https://doi.org/10.1016/0014-5793(95)00062-e.

    Article  CAS  PubMed  Google Scholar 

  36. Moazed, D., and Noller, H. F. (1989) Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites, Cell, 57, 585-597, doi: https://doi.org/10.1016/0092-8674(89)90128-1.

    Article  CAS  PubMed  Google Scholar 

  37. Moazed, D., and Noller, H. F. (1989) Intermediate states in the movement of transfer RNA in the ribosome, Nature, 342, 142-148, doi: https://doi.org/10.1038/342142a0.

    Article  CAS  PubMed  Google Scholar 

  38. Svetlov, M. S., Plessa, E., Chen, C.-W., Bougas, A., Krokidis, M. G., Dinos, G. P., and Polikanov, Y. S. (2019) High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition, RNA, 25, 600-606, doi: https://doi.org/10.1261/rna.069260.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ashwood, M. S., Bishop, C. B., Cottrell, I. F., Emerson, K. M., Hands, D., et al. (2003) Process for preparing peptide intermediates, European Patent Office, EP1226158A1.

  40. Kostopoulou, O., Kourelis, T., Mamos, P., Magoulas, G., and Kalpaxis, D. (2011) Insights into the chloramphenicol inhibition effect on peptidyl transferase activity, using two new analogs of the drug, Open Enzym. Inhib. J., 411, 1-10, doi: https://doi.org/10.2174/1874940201104010001.

    Article  CAS  Google Scholar 

  41. Bollhagen, R., Schmiedberger, M., Barlos, K., and Grell, E. (1994) A new reagent for the cleavage of fully protected peptides synthesised on 2-chlorotrityl chloride resin, J. Chem. Soc. Chem. Commun., 22, 2559-2560, doi: https://doi.org/10.1039/C39940002559.

    Article  Google Scholar 

  42. Kuntz, I. D., Chen, K., Sharp, K. A., and Kollman, P. A. (1999) The maximal affinity of ligands, Proc. Natl. Acad. Sci. USA, 96, 9997-10002, doi: https://doi.org/10.1073/pnas.96.18.9997.

    Article  CAS  PubMed  Google Scholar 

  43. Poulsen, S. M., Kofoed, C., and Vester, B. (2000) Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin, J. Mol. Biol., 304, 471-481, doi: https://doi.org/10.1006/jmbi.2000.4229.

    Article  CAS  PubMed  Google Scholar 

  44. Choi, J., Marks, J., Zhang, J., Chen, D. H., Wang, J., et al. (2019) Dynamics of the context-specific translation arrest by chloramphenicol and linezolid, Nat. Chem. Biol., 16, 310-317, doi: https://doi.org/10.1038/s41589-019-0423-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marks, J., Kannan, K., Roncase, E. J., Klepacki, D., Kefi, A., Orelle, C., Vázquez-Laslop, N., and Mankin, A. S. (2016) Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center, Proc. Natl. Acad. Sci. USA, 113, 12150-12155, doi: https://doi.org/10.1073/pnas.1613055113.

    Article  CAS  PubMed  Google Scholar 

  46. Makarov, G. I., and Makarova, T. M. (2018) A noncanonical binding site of chloramphenicol revealed via molecular dynamics simulations, Biochim. Biophys. Acta Gen. Subj., 1862, 2940-2947, doi: https://doi.org/10.1016/j.bbagen.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. A. Bogdanov for initiating and supporting studies on peptide derivatives of ribosomal antibiotics, to A. L. Konevega for providing the ribosomes and BODIPY-Met-tRNA for the work, to M. V. Serebryakova for help with mass spectrometric analysis, and to Y. K. Grishin for help with NMR spectra.

Funding

This work was financially supported by the Russian Foundation for Basic Research [projects nos. 20-04-00873-a (synthesis of analogues, molecular docking, binding to ribosomes) and 19-34-51021 (in vitro translation, chemical probing)]. The study was carried out using equipment purchased at the expense of the Moscow University Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sumbatyan.

Ethics declarations

The authors declare no conflict of interests in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairullina, Z.Z., Tereshchenkov, A.G., Zavyalova, S.A. et al. Interaction of Chloramphenicol Cationic Peptide Analogues with the Ribosome. Biochemistry Moscow 85, 1443–1457 (2020). https://doi.org/10.1134/S0006297920110127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920110127

Keywords

Navigation