Skip to main content
Log in

Aggregation of Influenza A Virus Nuclear Export Protein

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Influenza A virus nuclear export protein (NEP) plays an important role in the viral life cycle. Recombinant NEP proteins containing (His)6-tag at either N-or C-terminus were obtained by heterologous expression in Escherichia coli cells and their high propensity for aggregation was demonstrated. Dynamic light scattering technique was used to study the kinetics and properties of NEP aggregation in solutions under different conditions (pH, ionic strength, presence of low-molecular-weight additives and organic solvents). Using atomic force microscopy, the predominance of spherical aggregates in all examined NEP preparations was shown, with some amyloid-like structures being observed in the case of NEP-C protein. A number of structure prediction programs were used to identify aggregation-prone regions in the NEP structure. All-atom molecular dynamics simulations indicate a high rate of NEP molecule aggregation and reveal the regions preferentially involved in the intermolecular contacts that are located at the edges of the rod-like protein molecule. Our results suggest that NEP aggregation is determined by different types of interactions and represents an intrinsic property of the protein that appears to be necessary for its functioning in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a.a.:

amino acid

AFM:

atomic force microscopy

CHAPS:

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

DLS:

dynamic light scattering

GuHCl:

guanidine hydrochloride

NEP:

nuclear export protein

NEP-C and NEP-N:

recombinant NEP proteins with (His)6-tag at the C-and N-termini, respectively

PdI:

polydis-persity index

Rh :

hydrodynamic radius

References

  1. Manz, B., Schwemmle, M., and Brunotte, L. (2013) Adaptation of avian Influenza A virus polymerase in mammals to overcome the host species barrier, J. Virol., 87, 7200–7209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Brunotte, L., Flies, J., and Bolte, H. (2014) The nuclear export protein of H5N1 influenza A viruses recruits matrix 1 (M1) protein to the viral ribonucleoprotein to mediate nuclear export, J. Biol. Chem., 289, 20067–20077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Watanabe, K., Shimizu, T., Noda, S., Tsukahara, F., Maru, Y., and Kobayashi, N. (2014) Nuclear export of the influenza virus ribonucleoprotein complex: interaction of Hsc70 with viral proteins M1 and NS2, FEBS Open Bio, 4, 683–688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gorai, T., Goto, H., Noda, T., Watanabe, T., Kozuka-Hata, H., Oyama, M., Takano, R., Neumann, G., Watanabe, S., and Kawaoka, Y. (2012) F1F0-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding, Proc. Natl. Acad. Sci. USA, 109, 4615–4620.

    Article  PubMed  Google Scholar 

  5. Akarsu, H., Burmeister, W. P., Petosa, C., Petit, I., Muller, C. W., Ruigrok, R. W., and Baudin, F. (2003) Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2), EMBO J., 22, 4646–4655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lommer, B. S., and Luo, M. (2002) Structural plasticity in influenza virus protein NS2 (NEP), J. Biol. Chem., 277, 7108–7117.

    Article  PubMed  CAS  Google Scholar 

  7. Darapaneni, V., Prabhaker, V. K., and Kukol, A. (2009) Large-scale analysis of influenza A virus sequences reveals potential drug target sites of non-structural proteins, J. Gen. Virol., 90, 2124–2133.

    Article  PubMed  CAS  Google Scholar 

  8. Golovko, A. O., Koroleva, O. N., and Drutsa, V. L. (2017) Heterologous expression and isolation of influenza A virus nuclear export protein NEP, Biochemistry (Moscow), 82, 1529–1537.

    Article  CAS  Google Scholar 

  9. Gomez-Puertas, P., Albo, C., Perez-Pastrana, E., Vivo, A., and Portela, A. (2000) Influenza virus matrix protein is the major driving force in virus budding, J. Virol., 74, 11538–11547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rossman, J. S., and Lamb, R. A. (2011) Influenza virus assembly and budding, Virology, 411, 229–236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Calder, L. J., Wasilewski, S., Berriman, J. A., and Rosenthal, P. B. (2010) Structural organization of a filamentous influenza A virus, Proc. Natl. Acad. Sci. USA, 107, 10685–10690.

    Article  PubMed  Google Scholar 

  12. Vidic, J., Richard, C. A., Pechoux, C., Da Costa, B., Bertho, N., Mazerat, S., Delmas, B., and Chevalier, C. (2016) Amyloid assemblies of influenza A virus PB1-F2 protein damage membrane and induce cytotoxicity, J. Biol. Chem., 291, 739–751.

    Article  PubMed  CAS  Google Scholar 

  13. Uversky, V. N. (2008) Amyloidogenesis of natively unfolded proteins, Curr. Alzheimer Res., 5, 260–287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Laemmli, U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  15. Jachimska, B., Wasilewska, M., and Adamczyk, Z. (2008) Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements, Langmuir, 24, 6866–6872.

    Article  PubMed  CAS  Google Scholar 

  16. Muller, D. J., Janovjak, H., Lehto, T., Kuerschner, L., and Anderson, K. (2002) Observing structure, function and assembly of single proteins by AFM, Prog. Biophys. Mol. Biol., 79, 1–43.

    Article  PubMed  Google Scholar 

  17. Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., and Serrano, L. (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins, Nat. Biotechnol., 22, 1302–1306.

    Article  PubMed  CAS  Google Scholar 

  18. Conchillo-Sole, O., de Groot, N. S., Aviles, F. X., Vendrell, J., Daura, X., and Ventura, S. (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides, BMC Bioinformatics, 8,65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence, Bioinformatics, 26, 326–332.

    Article  PubMed  CAS  Google Scholar 

  20. Walsh, I., Seno, F., Tosatto, S. C. E., and Trovato, A. (2014) PASTA2: an improved server for protein aggregation prediction, Nucleic Acids Res., 42 (Web Server issue), W301–W307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Maurer-Stroh, S., Debulpaep, M., Kuemmerer, N., Lopez de la Paz, M., Martins, I. C., Reumers, J., Morris, K. L., Copland, A., Serpell, L., Serrano, L., Schymkowitz, J. W., and Rousseau, F. (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices, Nat. Methods, 7, 237–242.

    Article  PubMed  CAS  Google Scholar 

  22. O’Donnell, C. W., Waldispuhl, J., Lis, M., Halfmann, R., Devadas, S., Lindquist, S., and Berger, B. (2011) A method for probing the mutational landscape of amyloid structure, Bioinformatics, 27, i34–i42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gasior, P., and Kotulska, M. (2014) FISH amyloid-a new method for finding amyloidogenic segments in proteins based on site-specific co-occurrence of amino acids, BMC Bioinformatics, 15,54.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Thangakani, A. M., Kumar, S., Nagarajan, R., Velmurugan, D., and Gromiha, M. M. (2014) GAP: towards almost hundred percent prediction of β-strand mediated aggregating peptides with distinct morphologies, Bioinformatics, 30, 1983–1990.

    Article  PubMed  CAS  Google Scholar 

  25. Emily, M., Talvas, A., and Delamarche, C. (2013) MetAmyl: a METa-predictor for AMYLoid proteins, PLoS One, 8, e79722.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015) The I-TASSER suite: protein structure and function prediction, Nat. Methods, 12, 7–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1, 19–25.

    Article  Google Scholar 

  28. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins, 65, 712–725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chaichian, M., and Demichev, A. (2001) Path Integrals in Physics. Volume 1: Stochastic Process and Quantum Mechanics, Taylor & Francis.

    Book  Google Scholar 

  30. Zimmerman, K. (1991) All purpose molecular mechanics simulator and energy minimize, J. Comp. Chem., 12, 310–319.

    Article  Google Scholar 

  31. Khan, M. V., Zakariya, S. M., and Khan, R. H. (2018) Protein folding, misfolding and aggregation: a tale of constructive to destructive assembly, Int. J. Biol. Macromol., 112, 217–229.

    Article  PubMed  CAS  Google Scholar 

  32. Jeong, J. S., Ansaloni, A., Mezzenga, R., Lashuel, H. A., and Dietler, G. (2013) Novel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation, J. Mol. Biol., 425, 1765–1781.

    Article  PubMed  CAS  Google Scholar 

  33. Nehete, J. Y., Bhambar, R. S., Narkhede, M. R., and Gawali, S. R. (2013) Natural proteins: sources, isolation, characterization and applications, Pharmacogn. Rev., 7, 107–116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lange, C., and Rudolph, R. (2009) Suppression of protein aggregation by L-arginine, Curr. Pharm. Biotechnol., 10, 408–414.

    Article  PubMed  CAS  Google Scholar 

  35. Shukla, D., and Trout, B. L. (2010) Interaction of arginine with proteins and the mechanism by which it inhibits aggregation, J. Phys. Chem. B, 114, 13426–13438.

    Article  PubMed  CAS  Google Scholar 

  36. Gao, S., Wang, S., Cao, S., Sun, L., Li, J., Bi, Y., Gao, G. F., and Liu, W. (2014) Characteristics of nucleocytoplasmic transport of H1N1 influenza A virus nuclear export protein, J. Virol., 88, 7455–7463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Paterson, D., and Fodor, E. (2012) Emerging roles for the influenza A virus nuclear export protein (NEP), PLoS Pathog., 8, e1003019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Robb, N. C., Smith, M., Vreede, F. T., and Fodor, E. (2009) NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome, J. Gen. Virol., 90, 1398–1407.

    Article  PubMed  CAS  Google Scholar 

  39. Manz, B., Schwemmle, M., and Brunotte, L. (2013) Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier, J. Virol., 87, 7200–7209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Reuther, P., Giese, S., Gotz, V., Kilb, N., Manz, B., Brunotte, L., and Schwemmle, M. (2014) Adaptive mutations in the nuclear export protein of human-derived H5N1 strains facilitate a polymerase activity-enhancing conformation, J. Virol., 88, 263–271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Smirnova, T. D., Danilenko, D. M., and Slita, A. V. (2013) Role of cellular cytoskeleton in influenza A infection cycle, Tsitologiya, 55, 92–100.

    CAS  Google Scholar 

  42. Calder, L. J., Wasilewski, S., Berriman, J. A., and Rosenthal, P. B. (2010) Structural organization of a filamentous influenza A virus, Proc. Natl. Acad. Sci. USA, 107, 10685–10690.

    Article  PubMed  Google Scholar 

  43. Martyna, A., and Rossman, J. (2014) Alterations of membrane curvature during influenza virus budding, J. Biochem. Soc. Trans., 42, 1425–1428.

    Article  CAS  Google Scholar 

  44. Terakawa, M. S., Lin, Y., Kinoshita, M., Kanemura, S., Itoh, D., Sugiki, T., Okumura, M., Ramamoorthy, A., and Lee, Y. H. (2018) Impact of membrane curvature on amyloid aggregation, Biochim. Biophys. Acta, 1860, 1741–1764.

    Article  CAS  Google Scholar 

  45. Milanesi, L., Sheynis, T., Xue, W. F., Orlova, E. V., Hellewell, A. L., Jelinek, R., Hewitt, E. W., Radford, S. E., and Saibil, H. R. (2012) Direct three-dimensional visualization of membrane disruption by amyloid fibrils, Proc. Natl. Acad. Sci. USA, 109, 20455–22460.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Koroleva.

Additional information

Original Russian Text © A. O. Golovko, O. N. Koroleva, A. P. Tolstova, N. V. Kuz’mina, E. V. Dubrovin, V. L. Drutsa, 2018, published in Biokhimiya, 2018, Vol. 83, No. 11, pp. 1746–1758.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovko, A.O., Koroleva, O.N., Tolstova, A.P. et al. Aggregation of Influenza A Virus Nuclear Export Protein. Biochemistry Moscow 83, 1411–1421 (2018). https://doi.org/10.1134/S0006297918110111

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918110111

Keywords

Navigation