Skip to main content
Log in

Calcium-Dependent Desensitization of NMDA Receptors

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Glutamate receptors play the key role in excitatory synaptic transmission in the central nervous system (CNS). N-methyl-D-aspartate-activated glutamate receptors (NMDARs) are ion channels permeable to sodium, potassium, and calcium ions that localize to the pre- and postsynaptic membranes, as well as extrasynaptic neuronal membrane. Calcium entry into dendritic spines is essential for long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission. Both LTP and LTD represent morphological and functional changes occurring in the process of memory formation. NMDAR dysfunction is associated with epilepsy, schizophrenia, migraine, dementia, and neurodegenerative diseases. Prolonged activation of extrasynaptic NMDARs causes calcium overload and apoptosis of neurons. Here, we review recent findings on the molecular mechanisms of calcium-dependent NMDAR desensitization that ensures fast modulation of NMDAR conductance in the CNS and limits calcium entry into the cells under pathological conditions. We present the data on molecular determinants related to calcium-dependent NMDAR desensitization and functional interaction of NMDARs with other ion channels and transporters. We also describe association of NMDARs with lipid membrane microdomains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPAR:

α-amino-3-hydroxy-5-methyl-4-isoxazol propionic acid receptor

CaM:

calmodulin

NCX:

sodium-calcium exchanger

LTD:

long-term depression

LTP:

long-term potentiation

NMDAR:

N-methyl-D-aspartate receptor

PMCA:

plasma membrane calcium pump

VGCC:

voltage-gated calcium channel

References

  1. Pina-Crespo, J. C., and Gibb, A. J. (2002) Subtypes of NMDA receptors in new-born rat hippocampal granule cells, J. Physiol., 541, 41–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hansen, K. B., Ogden, K. K., Yuan, H., and Traynelis, S. F. (2014) Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors, Neuron, 81, 1084–1096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sibarov, D. A., Stepanenko, Y. D., Silantiev, I. V., Abushik, P. A., Karelina, T. V., and Antonov, S. M. (2018) Developmental changes of synaptic and extrasynaptic NMDA receptor expression in rat cerebellar neurons in vitro, J. Mol. Neurosci., 64, 300–311.

    Article  PubMed  CAS  Google Scholar 

  4. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999) The glutamate receptor ion channels, Pharmacol. Rev., 51, 7–61.

    PubMed  CAS  Google Scholar 

  5. Glasgow, N. G., Siegler Retchless, B., and Johnson, J. W. (2015) Molecular bases of NMDA receptor subtype-dependent properties, J. Physiol., 593, 83–95.

    Article  PubMed  CAS  Google Scholar 

  6. Kleckner, N. W., and Dingledine, R. (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes, Science, 241, 835–837.

    Article  PubMed  CAS  Google Scholar 

  7. Wolosker, H., Blackshaw, S., and Snyder, S. H. (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission, Proc. Natl. Acad. Sci. USA, 96, 13409–13414.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Patneau, D. K., and Mayer, M. L. (1990) Structure-activi-ty relationships for amino acid transmitter candidates act-ing at N-methyl-D-aspartate and quisqualate receptors, J. Neurosci., 10, 2385–2399.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Zarei, M. M., and Dani, J. A. (1994) Ionic permeability characteristics of the N-methyl-D-aspartate receptor channel, J. Gen. Physiol., 103, 231–248.

    Article  PubMed  CAS  Google Scholar 

  10. Bliss, T. V. P., and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  11. Bear, M. F. (1995) Mechanism for a sliding synaptic modification threshold, Neuron, 15, 1–4.

    Article  PubMed  CAS  Google Scholar 

  12. Lisman, J., Schulman, H., and Cline, H. (2002) The molecular basis of CaMKII function in synaptic and behavioral memory, Nat. Rev. Neurosci., 3, 175–190.

    Article  PubMed  CAS  Google Scholar 

  13. Malenka, R. C., and Nicoll, R. A. (1999) Long-term potentiation - a decade of progress? Science, 285, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  14. Malenka, R. C., and Bear, M. F. (2004) LTP and LTD: an embarrassment of riches, Neuron, 44, 5–21.

    Article  PubMed  CAS  Google Scholar 

  15. Citri, A., and Malenka, R. C. (2007) Synaptic plasticity: multiple forms, functions, and mechanisms, Neuropsychopharmacology, 33, 18–41.

    Article  PubMed  Google Scholar 

  16. Dore, K., Aow, J., and Malinow, R. (2016) The emergence of NMDA receptor metabotropic function: insights from imaging, Front. Synapt. Neurosci., 8, 1–9.

    Article  Google Scholar 

  17. Choi, D. W. (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death, Trends Neurosci., 18, 58–60.

    Article  PubMed  CAS  Google Scholar 

  18. Paoletti, P., Bellone, C., and Zhou, Q. (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease, Nat. Rev. Neurosci., 14, 383–400.

    Article  PubMed  CAS  Google Scholar 

  19. Mayer, M. L., and Armstrong, N. (2004) Structure and function of glutamate receptor ion channels, Annu. Rev. Physiol., 66, 161–181.

    Article  PubMed  CAS  Google Scholar 

  20. Mayer, M. L., Vyklicky, L., and Westbrook G. L. (1989) Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurons, J. Physiol., 415, 329–350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. McBain, C. J., and Mayer, M. L. (1994) N-methyl-D-aspartic acid receptor structure and function, Physiol. Rev., 74, 723–760.

    Article  PubMed  CAS  Google Scholar 

  22. Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M., and Mishina, M. (1992) Molecular diversity of the NMDA receptor channel, Nature, 358, 36–41.

    Article  PubMed  CAS  Google Scholar 

  23. Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., and Nakanishi, S. (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits, J. Biol. Chem., 268, 2836–2843.

    PubMed  CAS  Google Scholar 

  24. Clark, G. D., Clifford, D. B., and Zorumski, C. F. (1990) The effect of agonist concentration, membrane voltage and calcium on N-methyl-D-aspartate receptor desensitization, Neuroscience, 39, 787–797.

    Article  PubMed  CAS  Google Scholar 

  25. Legendre, P., Rosenmund, C., and Westbrook, G. L. (1993) Inactivation of NMDA channels on hippocampal neurons by intracellular calcium, J. Neurosci., 13, 674–684.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Rosenmund, C., and Westbrook, G. L. (1993) Calcium-induced actin depolymerization reduces NMDA channel activity, Neuron, 10, 805–814.

    Article  PubMed  CAS  Google Scholar 

  27. Vyklicky, L. J. (1993) Calcium-mediated modulation of N-methyl-D-aspartate (NMDA) responses in cultured rat hippocampal neurons, J. Physiol. (London), 470, 575–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J., and Dingledine, R. (2010) Glutamate receptor ion channels: structure, regulation, and function, Pharm. Rev., 62, 405–496.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Hedegaard, M., Hansen, K. B., Andersen, K. T., Brauner-Osborne, H., and Traynelis, S. F. (2012) Molecular phar-macology of human NMDA receptors, Neurochem. Int., 61, 601–609.

    Article  PubMed  CAS  Google Scholar 

  30. Dravid, S. M., Erreger, K., Yuan, H., Nicholson, K., Le, P., Lyuboslavsky, P., Almonte, A., Murray, E., Mosely, C., Barber, J., French, A., Balster, R., Murray, T. F., and Traynelis, S. F. (2007) Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block, J. Physiol., 581, 107–128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wyllie, D. J., Behe, P., and Colquhoun, D. (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors, J. Physiol., 510, 1–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. A. H., Wolfe, B. B., and Grayson, D. R. (1998) Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors, J. Neurophysiol., 79, 555–566.

    Article  PubMed  CAS  Google Scholar 

  33. Hansen, K. B., and Traynelis, S. F. (2011) Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors, J. Neurosci., 31, 3650–3661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J. P., Gunther, W., Seeburg, P. H., and Sakmann, B. (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor, Science, 257, 1415–1419.

    Article  PubMed  CAS  Google Scholar 

  35. Pankratov, Y., and Lalo, U. (2014) Calcium permeability of ligand-gated Ca(2+) channels, Eur. J. Pharmacol., 739, 60–73.

    Article  PubMed  CAS  Google Scholar 

  36. Krupp, J. J., Vissel, B., Thomas, C. G., Heinemann, S. F., and Westbrook, G. L. (1999) Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors, J. Neurosci., 19, 1165–1178.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Medina, I., Filippova, N., Charton, G., Rougeole, S., Ben-Ari, Y., Khrestchatisky, M., and Bregestovski, P. (1995) Calcium-dependent inactivation of heteromeric NMDA receptor-channels expressed in human embryonic kidney cells, J. Physiol., 482, 567–573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hardingham, G. E., and Bading, H. (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders, Nat. Rev. Neurosci., 11, 682–696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schwartz, E. J., Rothman, J. S., Dugue, G. P., Diana, M., Rousseau, C., Silver, R. A., and Dieudonne, S. (2012) NMDA receptors with incomplete Mg2+ block enable low-frequency transmission through the cerebellar cortex, J. Neurosci., 32, 6878–6893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hildebrand, M. E., Pitcher, G. M., Harding, E. K., Li, H., Beggs, S., and Salter, M. W. (2014) GluN2B and GluN2D NMDARs dominate synaptic responses in the adult spinal cord, Sci. Rep., 4, 4094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lesca, G., Rudolf, G., Bruneau, N., Lozovaya, N., Labalme, A., Boutry-Kryza, N., Salmi, M., Tsintsadze, T., Addis, L., Motte, J., Wright, S., Tsintsadze, V., Michel, A., Doummar, D., Lascelles, K., Strug, L., Waters, P., de Bellescize, J., Vrielynck, P., de Saint Martin, A., Ville, D., Ryvlin, P., Arzimanoglou, A., Hirsch, E., Vincent, A., Pal, D., Burnashev, N., Sanlaville, D., and Szepetowski, P. (2013) GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction, Nat. Genet., 45, 1061–1066.

    Article  PubMed  CAS  Google Scholar 

  42. Burnashev, N., and Szepetowski, P. (2015) NMDA recep-tor subunit mutations in neurodevelopmental disorders, Curr. Opin. Pharmacol., 20, 73–82.

    Article  PubMed  CAS  Google Scholar 

  43. Sibarov, D. A., Bruneau, N., Antonov, S. M., Szepetowski, P., Burnashev, N., and Giniatullin, R. (2017) Functional properties of human NMDA receptors associated with epilepsy-related mutations of GluN2A subunit, Front. Cell. Neurosci., 11, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mayer, M. L., and Westbrook, G. L. (1985) The action of N-methyl-D-aspartic acid on mouse spinal neurons in culture, J. Physiol., 361, 65–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zorumski, C. F., Yang, J., and Fischbach, G. D. (1989) Calcium dependent, slow desensitization distinguishes different types of glutamate receptors, Cell. Mol. Neurobiol., 9, 95–104.

    Article  PubMed  CAS  Google Scholar 

  46. Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R., and Cook, W. J. (1985) Three-dimensional structure of calmodulin, Nature, 315, 37–40.

    Article  PubMed  CAS  Google Scholar 

  47. Crivici, A., and Ikura, M. (1995) Molecular and structural basis of target recognition by calmodulin, Annu. Rev. Biophys. Biomol. Struct., 24, 85–116.

    Article  PubMed  CAS  Google Scholar 

  48. Yap, K. L., Ames, J. B., Swindells, M. B., and Ikura, M. (1999) Diversity of conformational states and changes within the EF-hand protein superfamily, Proteins, 37, 499–507.

    Article  PubMed  CAS  Google Scholar 

  49. Ehlers, M. D., Zhang, S., Bernhadt, J. P., and Huganir, R. L. (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit, Cell, 84, 745–755.

    Article  PubMed  CAS  Google Scholar 

  50. Chen, T. Y., and Yau, K. W. (1994) Direct modulation by Ca2+-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons, Nature, 368, 545–548.

    Article  PubMed  CAS  Google Scholar 

  51. Liu, M., Chen, T. Y., Ahamed, B., Li, J., and Yau, K. W. (1994) Calcium calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel, Science, 266, 1348–1354.

    Article  PubMed  CAS  Google Scholar 

  52. Lee, A., Wong, S. T., Gallagher, D., Li, B., Storm, D. R., Scheuer, T., and Catterall, W. A. (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels, Nature, 399, 155–159.

    Article  PubMed  CAS  Google Scholar 

  53. Peterson, B. Z., Lee, J. S., Mulle, J. G., Wang, Y., de Leon, M., and Yue, D. T. (2000) Critical determinants of Ca2+-dependent inactivation within an EF-hand motif of L-type Ca2+ channels, Biophys. J., 78, 1906–1920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W., and Reuter, H. (1999) Calmodulin supports both inactiva-tion and facilitation of L-type calcium channels, Nature, 399, 159–162.

    Article  PubMed  CAS  Google Scholar 

  55. Thomas, C. G., Krupp, J. J., Bagley, E. E., Bauzon, R., Heinemann, S. F., Vissel, B., and Westbrook, G. L. (2006) Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method, Mol. Pharmacol., 69, 1296–1303.

    Article  PubMed  CAS  Google Scholar 

  56. Ogden, K. K., Chen, W., Swanger, S. A., McDaniel, M. J., Fan, L. Z., Hu, C., Tankovic, A., Kusumoto, H., Kosobucki, G. J., Schulien, A. J., Su, Z., Pecha, J., Bhattacharya, S., Petrovski, S., Cohen, A. E., Aizenman, E., Traynelis, S. F., and Yuan, H. (2017) Molecular mech-anism of disease-associated mutations in the pre-M1 helix of NMDA receptors and potential rescue pharmacology, PloS Genetics, 13, e1006536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zhang, S., Ehlers, M. D., Bernhardt, J. P., Su, C. T., and Huganir, R. L. (1998) Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate recep-tors, Neuron, 21, 443–453.

    Article  PubMed  CAS  Google Scholar 

  58. Vissel, B., Krupp, J. J., Heinemann, S. F., and Westbrook, G. L. (2002) Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate recep-tors, Mol. Pharmacol., 61, 595–605.

    Article  PubMed  CAS  Google Scholar 

  59. Tingley, W. G., Roche, K. W., Thompson, A. K., and Huganir, R. L. (1993) Regulation of NMDA receptor phos-phorylation by alternative splicing of the C-terminal domain, Nature, 364, 70–73.

    Article  PubMed  CAS  Google Scholar 

  60. Raymond, L. A., Tingley, W. G., Blackstone, C. D., Roche, K. W., and Huganir, R. L. (1994) Glutamate receptor mod-ulation by protein phosphorylation, J. Physiol. Paris, 88, 181–192.

    Article  PubMed  CAS  Google Scholar 

  61. Ehlers, M. D., Tingley, W. G., and Huganir, R. L. (1995) Regulated subcellular distribution of the NR1 subunit of the NMDA receptor, Science, 269, 1734–1737.

    Article  PubMed  CAS  Google Scholar 

  62. Ehlers, M. D., Fung, E. T., O’brien, R. J., and Huganir, R. L. (1998) Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate fila-ments, J. Neurosci., 18, 720–730.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Wyszynski, M., Kharazia, V., Shanghvi, R., Rao, A., Beggs, A. H., Craig, A. M., Weinberg, R., and Sheng, M. (1998) Differential regional expression and ultrastructural local-ization of alpha-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain, J. Neurosci., 18, 1383–1392.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Allison, D. W., Gelfand, V. I., Spector, I., and Craig, A. M. (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors, J. Neurosci., 18, 2423–2436.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Krupp, J. J., Vissel, B., Heinemann, S. F., and Westbrook, G. L. (1996) Calcium-dependent inactivation of recombi-nant N-methyl-D-aspartate receptors is NR2 subunit spe-cific, Mol. Pharmacol., 50, 1680–1688.

    PubMed  CAS  Google Scholar 

  66. Wyllie, D. J., Behe, P., and Colquhoun, D. (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors, J. Physiol. (London), 510, 1–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Villarroel, A., Regalado, M. P., and Lerma, J. (1998) Glycine-independent NMDA receptor desensitization: localization of structural determinants, Neuron, 20, 329–339.

    Article  PubMed  CAS  Google Scholar 

  68. Stern-Bach, Y., Russo, S., Neuman, M., and Rosenmund, C. (1998) A point mutation in the glutamate binding site blocks desensitization of AMPA receptors, Neuron, 21, 907–918.

    Article  PubMed  CAS  Google Scholar 

  69. Rozov, A., and Burnashev, N. (2016) Fast interaction between AMPA and NMDA receptors by intracellular calcium, Cell Calcium, 60, 407–414.

    Article  PubMed  CAS  Google Scholar 

  70. Rycroft, B. K., and Gibb, A. J. (2004) Regulation of single NMDA receptor channel activity by alpha-actinin and calmodulin in rat hippocampal granule cells, J. Physiol., 557, 795–808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Medina, I., Filippova, N., Barbin, G., Ben-Ari, Y., and Bregestovski, P. (1994) Kainate-induced inactivation of NMDA currents via an elevation of intracellular Ca2+ in hippocampal neurons, J. Neurophysiol., 72, 456–465.

    Article  PubMed  CAS  Google Scholar 

  72. Gibson, H. E., Edwards, J. G., Page, R. S., Van Hook, M. J., and Kauer, J. A. (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons, Neuron, 57, 746–759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Vyklicky, L., Novakova-Tousova, K., Benedikt, J., Samad, A., Touska, F., and Vlachova, V. (2008) Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin, Physiol. Res., 57 (Suppl. 3), S59–S68.

    PubMed  CAS  Google Scholar 

  74. Emptage, N., Bliss, T. V., and Fine, A. (1999) Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines, Neuron, 22, 115–124.

    Article  PubMed  CAS  Google Scholar 

  75. Kapur, A., Yeckel, M., and Johnston, D. (2001) Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway, Neuroscience, 107, 59–69.

    Article  PubMed  CAS  Google Scholar 

  76. Goldberg, J. H., Yuste, R., and Tamas, G. (2003) Ca2+ imaging of mouse neocortical interneuron dendrites: contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2+ dynamics, J. Physiol., 551, 67–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kim, M.-H., Lee, S.-H., Park, K. H., Ho, W.-K., and Lee, S.-H. (2003) Distribution of K+-dependent Na+/Ca2+ exchangers in the rat supraoptic magnocellular neuron is polarized to axon terminals, J. Neurosci., 23, 11673–11680.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Komori, Y., Tanaka, M., Kuba, M., Ishii, M., Abe, M., Kitamura, N., Verkhratsky, A., Shibuya, I., and Dayanithi, G. (2010) Ca2+ homeostasis, Ca2+ signalling and somato-dendritic vasopressin release in adult rat supraoptic nucleus neurons, Cell Calcium, 48, 324–332.

    Article  PubMed  CAS  Google Scholar 

  79. Carafoli, E., Santella, L., Branca, D., and Brini, M. (2001) Generation, control, and processing of cellular calcium signals, Crit. Rev. Biochem. Mol. Biol., 36, 107–260.

    Article  PubMed  CAS  Google Scholar 

  80. Hilgemann, D. W. (1990) Regulation and deregulation of cardiac Na+-Ca2+ exchange in giant excised sarcolemmal membrane patches, Nature, 344, 242–245.

    Article  PubMed  CAS  Google Scholar 

  81. Hilgemann, D. W., Nicoll, D. A., and Philipson, K. D. (1991) Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger, Nature, 352, 715–718.

    Article  PubMed  CAS  Google Scholar 

  82. Sibarov, D. A., Abushik, P. A., Poguzhelskaya, E. E., Bolshakov, K. V., and Antonov, S. M. (2015) Inhibition of plasma membrane Na/Ca-exchanger by KB-R7943 or lithium reveals its role in Ca-dependent NMDAR inactiva-tion, J. Pharmacol. Exp. Ther., 355, 484–495.

    Article  PubMed  CAS  Google Scholar 

  83. Sibarov, D. A., Bolshakov, A. E., Abushik, P. A., Krivoi, I. I., and Antonov, S. M. (2012) Na+,K+-ATPase functional-ly interacts with the plasma membrane Na+,Ca2+-exchang-er to prevent Ca2+ overload and neuronal apoptosis in exci-totoxic stress, J. Pharmacol. Exp. Ther., 343, 596–607.

    Article  PubMed  CAS  Google Scholar 

  84. Abushik, P. A., Sibarov, D. A., Eaton, M. J., Skatchkov, S. N., and Antonov, S. M. (2013) Kainate-induced calcium overload of cortical neurons in vitro: dependence on expres-sion of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain, Cell Calcium, 54, 95–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Frank, C., Giammarioli, A. M., Pepponi, R., Fiorentini, C., and Rufini, S. (2004) Cholesterol perturbing agents inhibit NMDA-dependent calcium influx in rat hippocam-pal primary culture, FEBS Lett., 566, 25–29.

    Article  PubMed  CAS  Google Scholar 

  86. Korinek, M., Vyklicky, V., Borovska, J., Lichnerova, K., Kaniakova, M., Krausova, B., Krusek, J., Balik, A., Smejkalova, T., Horak, M., and Vyklicky, L. (2015) Cholesterol modulates open probability and desensitization of NMDA receptors, J. Physiol., 593, 2279–2293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Abulrob, A., Tauskela, J. S., Mealing, G., Brunette, E., Faid, K., and Stanimirovic, D. (2005) Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution, J. Neurochem., 92, 1477–1486.

    Article  PubMed  CAS  Google Scholar 

  88. Besshoh, S., Chen, S., Brown, I. R., and Gurd, J. W. (2007) Developmental changes in the association of NMDA receptors with lipid rafts, J. Neurosci. Res., 85, 1876–1883.

    Article  PubMed  CAS  Google Scholar 

  89. Delinte-Ramirez, I., Salcedo-Tello, P., and Bermudez-Rattoni, F. (2008) Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts, J. Neurochem., 106, 1658–1668.

    Article  CAS  Google Scholar 

  90. Marques-da-Silva, D., and Gutierrez-Merino, C. (2012) L-type voltage-operated calcium channels, N-methyl-d-aspartate receptors and neuronal nitric-oxide synthase form a calcium/redox nano-transducer within lipid rafts, Biochem. Biophys. Res. Commun., 420, 257–262.

    Article  PubMed  CAS  Google Scholar 

  91. Marques-da-Silva, D., and Gutierrez-Merino, C. (2014) Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling, Cell Calcium, 56, 108–123.

    Article  PubMed  CAS  Google Scholar 

  92. Pike, L. J. (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function, J. Lipid Res., 47, 1597–1598.

    Article  PubMed  CAS  Google Scholar 

  93. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons, Proc. Natl. Acad. Sci. USA, 95, 6460–6464.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Wolf, A. A., Jobling, M. G., Wimer-Mackin, S., Ferguson-Maltzman, M., Madara, J. L., Holmes, R. K., Lencer, W. I., Ruston, S., Madara, J. L., and Hirst, T. (1998) Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia, J. Cell Biol., 141, 917–927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Raghupathy, R., Anilkumar, A. A., Polley, A., Singh, P. P., Yadav, M., Johnson, C., Suryawanshi, S., Saikam, V., Sawant, S. D., Panda, A., Guo, Z., Vishwakarma, R. A., Rao, M., and Mayor, S. (2015) Transbilayer lipid interac-tions mediate nanoclustering of lipid-anchored proteins, Cell, 161, 581–594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Iacobucci, G. J., and Popescu, G. K. (2017) Resident calmodulin primes NMDA receptors for Ca-dependent inactivation, Biophys. J., 113, 2236–2248.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Parekh, A. B. (2008) Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function, J. Physiol., 586, 3043–3054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Petersen, A., and Gerges, N. Z. (2015) Neurogranin regu-lates CaM dynamics at dendritic spines, Sci. Rep., 5, 11135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Hoffman, L., Chandrasekar, A., Wang, X., Putkey, J. A., and Waxham, M. N. (2014) Neurogranin alters the struc-ture and calcium binding properties of calmodulin, J. Biol. Chem., 289, 14644–14655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Goldberg, J. H., Tamas, G., Aronov, D., and Yuste, R. (2003) Calcium microdomains in aspiny dendrites, Neuron, 40, 807–821.

    Article  PubMed  CAS  Google Scholar 

  101. Chard, P. S., Jordan, J., Marcuccilli, C. J., Miller, R. J., Leiden, J. M., Roos, R. P., and Ghadge, G. D. (1995) Regulation of excitatory transmission at hippocampal synapses by calbindin D28k, Proc. Nat. Acad. Sci. USA, 92, 5144–5148.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Ponce, J., de la Ossa, N. P., Hurtado, O., Millan, M., Arenillas, J. F., Davalos, A., and Gasull, T. (2008) Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotec-tion, Stroke, 39, 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  103. Valiullina, F., Zakharova, Y., Mukhtarov, M., Draguhn, A., Burnashev, N., and Rozov, A. (2016) The relative contribution of NMDARs to excitatory postsynaptic currents is controlled by Ca2+-induced inactivation, Front. Cell. Neurosci., 10, 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Frank, C., Rufini, S., Tancredi, V., Forcina, R., Grossi, D., and D’Arcangelo, G. (2008) Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus, Exp. Neurol., 212, 407–414.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sibarov.

Additional information

Original Russian Text © D. A. Sibarov, S. M. Antonov, 2018, published in Biokhimiya, 2018, Vol. 83, No. 10, pp. 1464–1475.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibarov, D.A., Antonov, S.M. Calcium-Dependent Desensitization of NMDA Receptors. Biochemistry Moscow 83, 1173–1183 (2018). https://doi.org/10.1134/S0006297918100036

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918100036

Keywords

Navigation