Skip to main content

Advertisement

Log in

Trastuzumab and pertuzumab plant biosimilars: Modification of Asn297-linked glycan of the mAbs produced in a plant with fucosyltransferase and xylosyltransferase gene knockouts

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Plant biosimilars of anticancer therapeutic antibodies are of interest not only because of the prospects of their practical use, but also as an instrument and object for study of plant protein glycosylation. In this work, we first designed a pertuzumab plant biosimilar (PPB) and investigated the composition of its Asn297-linked glycan in comparison with trastuzumab plant biosimilar (TPB). Both biosimilars were produced in wild-type (WT) Nicotiana benthamiana plant (PPBWT and TPB-WT) and transgenic ΔXTFT N. benthamiana plant with XT and FT genes knockout (PPB-ΔXTFT and TPBΔXTFT). Western blot analysis with anti-α1,3-fucose and anti-xylose antibodies, as well as a test with peptide-N-glycosidase F, confirmed the absence of α1,3-fucose and xylose in the Asn297-linked glycan of PPB-ΔXTFT and TPB-ΔXTFT. Peptide analysis followed by the identification of glycomodified peptides using MALDI-TOF/TOF showed that PPB-WT and TPB-WT Asn297-linked glycans are mainly of complex type GnGnXF. The core of PPB-WT and TPB-WT Asn297linked GnGn-type glycan contains α1,3-fucose and β1,2-xylose, which, along with the absence of terminal galactose and sialic acid, distinguishes these plant biosimilars from human IgG. Analysis of TPB-ΔXTFT total carbohydrate content indicates the possibility of changing the composition of the carbohydrate profile not only of the Fc, but also of the Fab portion of an antibody produced in transgenic ΔXTFT N. benthamiana plants. Nevertheless, study of the antigen-binding capacity of the biosimilars showed that absence of xylose and fucose residues in the Asn297-linked glycans does not affect the ability of the glycomodified antibodies to interact with HER2/neu positive cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

Fab:

fragment antigen-binding

Fc:

fragment crystallizable

FT:

α1,3-fucosyltransferase

GlcNAc:

N-acetylglucosamine

HC:

antibody heavy chain

HER2 and HER3:

human epidermal growth factor receptors 2 and 3

IgG:

immunoglobulin G

LC:

antibody light chain

MALDI-TOF/TOF:

matrix-assisted laser desorption/ionization-timeof-flight/time-of-flight tandem mass spectrometry

MAPP:

monoclonal antibody produced in plants

PNGase F:

peptide-N-glycosidase F

PPB:

pertuzumab plant biosimilar

PPB-ΔXTFT:

pertuzumab plant biosimilar obtained from N. benthamiana ΔXTFT

TFA:

trifluoroacetic acid

TMA:

therapeutic monoclonal antibody

TPB:

trastuzumab plant biosimilar

TPB-ΔXTFT:

trastuzumab plant biosimilar obtained from N. benthamiana ΔXTFT

XT:

β1,2-xylosyltransferase

ΔXTFT:

transgenic N. benthamiana plants with knockout of α1,3-fucosyltransferase (FT) and β1,2-xylosyltransferase (XT) genes

References

  1. Sheshukova, E. V., Komarova T. V., and Dorokhov, Y. L. (2016) Plant factories for the production of monoclonal antibodies, Biochemistry (Moscow), 81, 1118–1135.

    Article  CAS  Google Scholar 

  2. Dorokhov, Y. L., Sheshukova, E. V., Kosobokova, E. N., Shindyapina, A. V., Kosorukov, V. S., and Komarova, T. V. (2016) Functional role of carbohydrate residues in human immunoglobulin G and therapeutic monoclonal antibodies, Biochemistry (Moscow), 81, 835–857.

    Article  CAS  Google Scholar 

  3. Loos, A., and Steinkellner, H. (2014) Plant glyco-biotechnology on the way to synthetic biology, Front. Plant Sci., 5, 523.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gronski, P., Seiler, F. R., and Schwick, H. G. (1991) Discovery of antitoxins and development of antibody preparations for clinical uses from 1890 to 1990, Mol. Immunol., 28, 1321–1332.

    Article  CAS  PubMed  Google Scholar 

  5. Kunert, R., and Casanova, E. (2013) Recent advances in recombinant protein production: BAC-based expression vectors, the bigger the better, Bioengineered, 4, 258–261.

    Article  PubMed  Google Scholar 

  6. Walsh, G. (2014) Biopharmaceutical benchmarks 2014, Nat. Biotechnol., 32, 992–1000.

    Article  CAS  PubMed  Google Scholar 

  7. Niwa, R., and Satoh, M. (2015) The current status and prospects of antibody engineering for therapeutic use: focus on glycoengineering technology, J. Pharm. Sci., 104, 930–941.

    Article  CAS  PubMed  Google Scholar 

  8. Hiatt, A., Whaley, K. J., and Zeitlin, L. (2014) Plantderived monoclonal antibodies for prevention and treatment of infectious disease, Microbiol. Spectr., 2, AID-0004–2012.

  9. Holtz, B. R., Berquist, B. R., Bennett, L. D., Kommineni, V. J. M., Munigunti, R. K., White, E. L., Wilkerson, D. C., Wong, K.-Y. I., Ly, L. H., and Marcel, S. (2015) Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals, Plant Biotechnol. J., 13, 1180–1190.

    Article  CAS  PubMed  Google Scholar 

  10. Gleba, Y. Y., Tuse, D., and Giritch, A. (2014) Plant viral vectors for delivery by Agrobacterium, Curr. Top. Microbiol. Immunol., 375, 155–192.

    CAS  PubMed  Google Scholar 

  11. Komarova, T. V., Baschieri, S., Donini, M., Marusic, C., Benvenuto, E., and Dorokhov, Y. L. (2010) Transient expression systems for plant-derived biopharmaceuticals, Expert Rev. Vaccines, 9, 859–876.

    Article  CAS  PubMed  Google Scholar 

  12. Komarova, T. V., Kosorukov, V. S., Frolova, O. Y., Petrunia, I. V., Skrypnik, K. A., Gleba, Y. Y., and Dorokhov, Y. L. (2011) Plant-made trastuzumab (Herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth, PLoS One, 6, e17541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stoger, E., Fischer, R., Moloney, M., and Ma, J. K.-C. (2014) Plant molecular pharming for the treatment of chronic and infectious diseases, Annu. Rev. Plant Biol., 65, 743–768.

    Article  CAS  PubMed  Google Scholar 

  14. Rimawi, M. F., Schiff, R., and Osborne, C. K. (2015) Targeting HER2 for the treatment of breast cancer, Annu. Rev. Med., 66, 111–128.

    Article  CAS  PubMed  Google Scholar 

  15. Barthelemy, P., Leblanc, J., Wendling, F., Wissler, M.-P., and Bergerat, J.-P. (2014) Pertuzumab and solid tumors: perspectives, Bull. Cancer (Paris), 101, 1114–1121.

    Google Scholar 

  16. Chung, C., and Lam, M. S. H. (2013) Pertuzumab for the treatment of human epidermal growth factor receptor type 2-positive metastatic breast cancer, Am. J. Health Syst. Pharm., 70, 1579–1587.

    Article  CAS  PubMed  Google Scholar 

  17. Strasser, R., Stadlmann, J., Schahs, M., Stiegler, G., Quendler, H., Mach, L., Glossl, J., Weterings, K., Pabst, M., and Steinkellner, H. (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure, Plant Biotechnol. J., 6, 392–402.

    Article  CAS  PubMed  Google Scholar 

  18. Arce, A. L., Cabello, J. V., and Chan, R. L. (2008) Patents on plant transcription factors, Recent Pat. Biotechnol., 2, 209–217.

    Article  CAS  PubMed  Google Scholar 

  19. Dorokhov, Y. L., Frolova, O. Y., Skurat, E. V., Ivanov, P. A., Gasanova, T. V., Sheveleva, A. A., Ravin, N. V., Makinen, K. M., Klimyuk, V. I., Skryabin, K. G., Gleba, Y. Y., and Atabekov, J. G. (2006) A novel function for a ubiquitous plant enzyme pectin methylesterase: the enhancer of RNA silencing, FEBS Lett., 580, 3872–3878.

    Article  CAS  PubMed  Google Scholar 

  20. Tretter, V., Altmann, F., and Marz, L. (1991) Peptide-N4(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1–3 to the asparagine-linked N-acetylglucosamine residue, Eur. J. Biochem. FEBS, 199, 647–652.

    Article  CAS  Google Scholar 

  21. Kute, T., Lack, C. M., Willingham, M., Bishwokama, B., Williams, H., Barrett, K., Mitchell, T., and Vaughn, J. P. (2004) Development of Herceptin resistance in breast cancer cells, Cytom. Part J. Int. Soc. Anal. Cytol., 57, 86–93.

    Google Scholar 

  22. Garabagi, F., McLean, M. D., and Hall, J. C. (2012) Transient and stable expression of antibodies in Nicotiana species, Methods Mol. Biol. Clifton NJ, 907, 389–408.

    Article  CAS  Google Scholar 

  23. Grohs, B. M., Niu, Y., Veldhuis, L. J., Trabelsi, S., Garabagi, F., Hassell, J. A., McLean, M. D., and Hall, J. C. (2010) Plant-produced trastuzumab inhibits the growth of HER2 positive cancer cells, J. Agric. Food Chem., 58, 10056–10063.

    Article  CAS  PubMed  Google Scholar 

  24. Castilho, A., Gruber, C., Thader, A., Oostenbrink, C., Pechlaner, M., Steinkellner, H., and Altmann, F. (2015) Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation, mAbs, 7, 863–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tuse, D., Ku, N., Bendandi, M., Becerra, C., Collins, R., Langford, N., Sancho, S. I., Lopez-Diaz de Cerio, A., Pastor, F., Kandzia, R., Thieme, F., Jarczowski, F., Krause, D., Ma, J. K.-C., Pandya, S., Klimyuk, V., Gleba, Y., and Butler-Ransohoff, J. E. (2015) Clinical safety and immunogenicity of tumor-targeted, plant-made Id–KLH conjugate vaccines for follicular lymphoma, BioMed Res. Int., 2015, 648143.

    PubMed  Google Scholar 

  26. Franklin, M. C., Carey, K. D., Vajdos, F. F., Leahy, D. J., De Vos, A. M., and Sliwkowski, M. X. (2004) Insights into ErbB signaling from the structure of the ErbB2–pertuzumab complex, Cancer Cell, 5, 317–328.

    Article  CAS  PubMed  Google Scholar 

  27. Garabagi, F., Gilbert, E., Loos, A., McLean, M. D., and Hall, J. C. (2012) Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts, Plant Biotechnol. J., 10, 1118–1128.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Dorokhov.

Additional information

Original Russian Text © T. V. Komarova, E. V. Sheshukova, E. N. Kosobokova, M. V. Serebryakova, V. S. Kosorukov, V. N. Tashlitsky, Y. L. Dorokhov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 4, pp. 687-699.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarova, T.V., Sheshukova, E.V., Kosobokova, E.N. et al. Trastuzumab and pertuzumab plant biosimilars: Modification of Asn297-linked glycan of the mAbs produced in a plant with fucosyltransferase and xylosyltransferase gene knockouts. Biochemistry Moscow 82, 510–520 (2017). https://doi.org/10.1134/S0006297917040137

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917040137

Keywords

Navigation