Skip to main content
Log in

Iron-sulfur clusters in mitochondrial metabolism: Multifaceted roles of a simple cofactor

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Iron-sulfur metabolism is essential for cellular function and is a key process in mitochondria. In this review, we focus on the structure and assembly of mitochondrial iron-sulfur clusters and their roles in various metabolic processes that occur in mitochondria. Iron-sulfur clusters are crucial in mitochondrial respiration, in which they are required for the assembly, stability, and function of respiratory complexes I, II, and III. They also serve important functions in the citric acid cycle, DNA metabolism, and apoptosis. Whereas the identification of iron-sulfur containing proteins and their roles in numerous aspects of cellular function has been a long-standing research area, that in mitochondria is comparatively recent, and it is likely that their roles within mitochondria have been only partially revealed. We review the status of the field and provide examples of other cellular iron-sulfur proteins to highlight their multifarious roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BN-PAGE:

blue native polyacrylamide gel electrophoresis

cI-III:

respiratory complexes I-III

CIA:

cytosolic iron-sulfur protein assembly

ETC:

electron transport chain

Fe-S:

iron-sulfur

IRE:

iron-responsive elements

IRP:

ironregulatory protein

ISCs:

iron-sulfur clusters

ISP:

iron-sulfur protein

mtDNA:

mitochondrial DNA

Q:

ubiquinone

References

  1. Baker, H. M., Anderson, B. F., and Baker, E. N. (2003) Dealing with iron: common structural principles in proteins that transport iron and heme, Proc. Natl. Acad. Sci. USA, 100, 3579–3583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beinert, H., Holm, R. H., and Munck, E. (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures, Science, 277, 653–659.

    Article  CAS  PubMed  Google Scholar 

  3. Beinert, H. (2000) Iron-sulfur proteins: ancient structures, still full of surprises, J. Biol. Inorg. Chem., 5, 2–15.

    Article  CAS  PubMed  Google Scholar 

  4. Kiley, P. J., and Beinert, H. (2003) The role of Fe-S proteins in sensing and regulation in bacteria, Curr. Opin. Microbiol., 6, 181–185.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson, D. C., Dean, D. R., Smith, A. D., and Johnson, M. K. (2005) Structure, function, and formation of biological iron-sulfur clusters, Annu. Rev. Biochem., 74, 247–281.

    Article  CAS  PubMed  Google Scholar 

  6. Brzoska, K., Meczynska, S., and Kruszewski, M. (2006) Iron-sulfur cluster proteins: electron transfer and beyond, Acta Biochim. Pol., 53, 685–691.

    CAS  PubMed  Google Scholar 

  7. Wiedemann, N., Urzica, E., Guiard, B., Muller, H., Lohaus, C., Meyer, H. E., Ryan, M. T., Meisinger, C., Muhlenhoff, U., Lill, R., and Pfanner, N. (2006) Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins, EMBO J., 25, 184–195.

    Article  CAS  PubMed  Google Scholar 

  8. Shi, Y., Ghosh, M. C., Tong, W. H., and Rouault, T. A. (2009) Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis, Hum. Mol. Genet., 18, 3014–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tong, W. H., and Rouault, T. (2000) Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells, EMBO J., 19, 5692–5700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tong, W. H., and Rouault, T. A. (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian ironsulfur cluster biogenesis and iron homeostasis, Cell Metab., 3, 199–210.

    Article  CAS  PubMed  Google Scholar 

  11. Tamir, S., Paddock, M. L., Darash- Yahana-Baram, M., Holt, S. H., Sohn, Y. S., Agranat, L., Michaeli, D., Stofleth, J. T., Lipper, C. H., Morcos, F., Cabantchik, I. Z., Onuchic, J. N., Jennings, P. A., Mittler, R., and Nechushtai, R. (2015) Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease, Biochim. Biophys. Acta, 1853, 1294–1315.

    Article  CAS  PubMed  Google Scholar 

  12. Fuss, J. O., Tsai, C. L., Ishida, J. P., and Tainer, J. A. (2015) Emerging critical roles of Fe-S clusters in DNA replication and repair, Biochim. Biophys. Acta, 1853, 1253–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stemmler, T. L., Lesuisse, E., Pain, D., and Dancis, A. (2010) Frataxin and mitochondrial Fe-S cluster biogenesis, J. Biol. Chem., 285, 26737–26743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bridwell-Rabb, J., Fox, N. G., Tsai, C. L., Winn, A. M., and Barondeau, D. P. (2014) Human frataxin activates FeS cluster biosynthesis by facilitating sulfur transfer chemistry, Biochemistry, 53, 4904–4913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rouault, T. A., and Tong, W. H. (2005) Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis, Nat. Rev. Mol. Cell Biol., 6, 345–351.

    Article  CAS  PubMed  Google Scholar 

  16. Lill, R., and Muhlenhoff, U. (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms, Annu. Rev. Cell Dev. Biol., 22, 457–486.

    Article  CAS  PubMed  Google Scholar 

  17. Lill, R., Dutkiewicz, R., Elsasser, H. P., Hausmann, A., Netz, D. J., Pierik, A. J., Stehling, O., Urzica, E., and Muhlenhoff, U. (2006) Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes, Biochim. Biophys. Acta, 1763, 652–667.

    Article  CAS  PubMed  Google Scholar 

  18. Napier, I., Ponka, P., and Richardson, D. R. (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease, Blood, 105, 1867–1874.

    Article  CAS  PubMed  Google Scholar 

  19. Rouault, T. A. (2012) Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease, Dis. Models Mech., 5, 155–164.

    Article  CAS  Google Scholar 

  20. Beilschmidt, L. K., and Puccio, H. M. (2014) Mammalian Fe-S cluster biogenesis and its implication in disease, Biochimie, 100, 48–60.

    Article  CAS  PubMed  Google Scholar 

  21. Maio, N., Ghezzi, D., Verrigni, D., Rizza, T., Bertini, E., Martinelli, D., Zeviani, M., Singh, A., Carrozzo, R., and Rouault, T. A. (2015) Disease-causing SDHAF1 mutations impair transfer of Fe-S clusters to SDHB, Cell Metab., 23, 292–302.

    Article  PubMed  CAS  Google Scholar 

  22. Lill, R. (2009) Function and biogenesis of iron-sulphur proteins, Nature, 460, 831–838.

    Article  CAS  PubMed  Google Scholar 

  23. Paul, V. D., and Lill, R. (2015) Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability, Biochim. Biophys. Acta, 1853, 1528–1539.

    Article  CAS  PubMed  Google Scholar 

  24. Wiley, S. E., Paddock, M. L., Abresch, E. C., Gross, L., Van der Geer, P., Nechushtai, R., Murphy, A. N., Jennings, P. A., and Dixon, J. E. (2007) The outer mitochondrial membrane protein mitoNEET contains a novel redoxactive 2Fe-2S cluster, J. Biol. Chem., 282, 23745–23749.

    Article  CAS  PubMed  Google Scholar 

  25. Leggate, E. J., Bill, E., Essigke, T., Ullmann, G. M., and Hirst, J. (2004) Formation and characterization of an allferrous Rieske cluster and stabilization of the [2Fe-2S](0) core by protonation, Proc. Natl. Acad. Sci. USA, 101, 10913–10918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer, J. (2008) Iron-sulfur protein folds, iron-sulfur chemistry, and evolution, J. Biol. Inorg. Chem., 13, 157–170.

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, M. K., and Smith, A. D. (2005) Iron-sulfur proteins, in Encyclopedia of Inorganic Chemistry (King, R. B., ed.) 2nd Edn., John Wiley & Sons, Chichester, pp. 2589–2619.

  28. Ren, B., Duan, X., and Ding, H. (2009) Redox control of the DNA damage-inducible protein DinG helicase activity via its iron-sulfur cluster, J. Biol. Chem., 284, 4829–4835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ding, H., Hidalgo, E., and Demple, B. (1996) The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor, J. Biol. Chem., 271, 33173–33175.

    Article  CAS  PubMed  Google Scholar 

  30. Ramon-Garcia, S., Ng, C., Jensen, P. R., Dosanjh, M., Burian, J., Morris, R. P., Folcher, M., Eltis, L. D., Grzesiek, S., Nguyen, L., and Thompson, C. J. (2013) WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria, J. Biol. Chem., 288, 34514–34528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jain, R., Vanamee, E. S., Dzikovski, B. G., Buku, A., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase epsilon, J. Mol. Biol., 426, 301–308.

    Article  CAS  PubMed  Google Scholar 

  32. Netz, D. J., Stith, C. M., Stumpfig, M., Kopf, G., Vogel, D., Genau, H. M., Stodola, J. L., Lill, R., Burgers, P. M., and Pierik, A. J. (2012) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes, Nat. Chem. Biol., 8, 125–132.

    Article  CAS  Google Scholar 

  33. Zhang, C. (2014) Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control, Protein Cell, 5, 750–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stiban, J., Farnum, G. A., Hovde, S. L., and Kaguni, L. S. (2014) The N-terminal domain of the Drosophila mitochondrial replicative DNA helicase contains an iron-sulfur cluster and binds DNA, J. Biol. Chem., 289, 24032–24042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pokharel, S., and Campbell, J. L. (2012) Cross talk between the nuclease and helicase activities of Dna2: role of an essential iron-sulfur cluster domain, Nucleic Acids Res., 40, 7821–7830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frazzon, J., and Dean, D. R. (2003) Formation of ironsulfur clusters in bacteria: an emerging field in bioinorganic chemistry, Curr. Opin. Chem. Biol., 7, 166–173.

    Article  CAS  PubMed  Google Scholar 

  37. Biederbick, A., Stehling, O., Rosser, R., Niggemeyer, B., Nakai, Y., Elsasser, H. P., and Lill, R. (2006) Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation, Mol. Cell. Biol., 26, 5675–5687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi, R., Proteau, A., Villarroya, M., Moukadiri, I., Zhang, L., Trempe, J. F., Matte, A., Armengod, M. E., and Cygler, M. (2010) Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein–protein interactions, PLoS Biol., 8, e1000354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Adam, A. C., Bornhovd, C., Prokisch, H., Neupert, W., and Hell, K. (2006) The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria, EMBO J., 25, 174–183.

    Article  CAS  PubMed  Google Scholar 

  40. Bandyopadhyay, S., Chandramouli, K., and Johnson, M. K. (2008) Iron-sulfur cluster biosynthesis, Biochem. Soc. Trans., 36, 1112–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Raulfs, E. C., O’Carroll, I. P., Dos Santos, P. C., Unciuleac, M. C., and Dean, D. R. (2008) In vivo iron-sulfur cluster formation, Proc. Natl. Acad. Sci. USA, 105, 8591–8596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fox, N. G., Das, D., Chakrabarti, M., Lindahl, P. A., and Barondeau, D. P. (2015) Frataxin accelerates [2Fe-2S] cluster formation on the human Fe–S assembly complex, Biochemistry, 54, 3880–3889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fox, N. G., Chakrabarti, M., McCormick, S. P., Lindahl, P. A., and Barondeau, D. P. (2015) The human iron–sulfur assembly complex catalyzes the synthesis of [2Fe-2S] clusters on ISCU2 that can be transferred to acceptor molecules, Biochemistry, 54, 3871–3879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmucker, S., Martelli, A., Colin, F., Page, A., Wattenhofer-Donze, M., Reutenauer, L., and Puccio, H. (2011) Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron–sulfur assembly complex, PLoS One, 6, e16199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsai, C. L., and Barondeau, D. P. (2010) Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex, Biochemistry, 49, 9132–9139.

    Article  CAS  PubMed  Google Scholar 

  46. Bridwell-Rabb, J., Winn, A. M., and Barondeau, D. P. (2011) Structure-function analysis of Friedreich’s ataxia mutants reveals determinants of frataxin binding and activation of the Fe–S assembly complex, Biochemistry, 50, 7265–7274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi, Y., Ghosh, M., Kovtunovych, G., Crooks, D. R., and Rouault, T. A. (2012) Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis, Biochim. Biophys. Acta, 1823, 484–492.

    Article  CAS  PubMed  Google Scholar 

  48. Chandramouli, K., Unciuleac, M. C., Naik, S., Dean, D. R., Huynh, B. H., and Johnson, M. K. (2007) Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein, Biochemistry, 46, 6804–6811.

    Article  CAS  PubMed  Google Scholar 

  49. Al-Hassnan, Z. N., Al-Dosary, M., Alfadhel, M., Faqeih, E. A., Alsagob, M., Kenana, R., Almass, R., Al-Harazi, O. S., Al-Hindi, H., Malibari, O. I., Almutari, F. B., Tulbah, S., Alhadeq, F., Al-Sheddi, T., Alamro, R., AlAsmari, A., Almuntashri, M., Alshaalan, H., Al-Mohanna, F. A., Colak, D., and Kaya, N. (2015) ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder, J. Med. Genet., 52, 186–194.

    Article  CAS  PubMed  Google Scholar 

  50. Uhrigshardt, H., Singh, A., Kovtunovych, G., Ghosh, M., and Rouault, T. A. (2010) Characterization of the human HSC20, an unusual DnaJ type III protein, involved in ironsulfur cluster biogenesis, Hum. Mol. Genet., 19, 3816–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vickery, L. E., and Cupp-Vickery, J. R. (2007) Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation, Crit. Rev. Biochem. Mol. Biol., 42, 95–111.

    Article  CAS  PubMed  Google Scholar 

  52. Maio, N., Singh, A., Uhrigshardt, H., Saxena, N., Tong, W. H., and Rouault, T. A. (2014) Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery, Cell Metab., 19, 445–457.

    Article  CAS  PubMed  Google Scholar 

  53. Maio, N., and Rouault, T. A. (2015) Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery, Biochim. Biophys. Acta, 1853, 1493–1512.

    Article  CAS  PubMed  Google Scholar 

  54. Bych, K., Kerscher, S., Netz, D. J., Pierik, A. J., Zwicker, K., Huynen, M. A., Lill, R., Brandt, U., and Balk, J. (2008) The iron-sulphur protein Ind1 is required for effective complex I assembly, EMBO J., 27, 1736–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheftel, A. D., Stehling, O., Pierik, A. J., Netz, D. J., Kerscher, S., Elsasser, H. P., Wittig, I., Balk, J., Brandt, U., and Lill, R. (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I, Mol. Cell. Biol., 29, 6059–6073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lill, R., Hoffmann, B., Molik, S., Pierik, A. J., Rietzschel, N., Stehling, O., Uzarska, M. A., Webert, H., Wilbrecht, C., and Muhlenhoff, U. (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism, Biochim. Biophys. Acta, 1823, 1491–1508.

    Article  CAS  PubMed  Google Scholar 

  57. Stehling, O., Wilbrecht, C., and Lill, R. (2014) Mitochondrial iron-sulfur protein biogenesis and human disease, Biochimie, 100, 61–77.

    Article  CAS  PubMed  Google Scholar 

  58. Guruharsha, K. G., Rual, J. F., Zhai, B., Mintseris, J., Vaidya, P., Vaidya, N., Beekman, C., Wong, C., Rhee, D. Y., Cenaj, O., McKillip, E., Shah, S., Stapleton, M., Wan, K. H., Yu, C., Parsa, B., Carlson, J. W., Chen, X., Kapadia, B., VijayRaghavan, K., Gygi, S. P., Celniker, S. E., Obar, R. A., and Artavanis-Tsakonas, S. (2011) A protein complex network of Drosophila melanogaster, Cell, 147, 690–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lim, S. C., Friemel, M., Marum, J. E., Tucker, E. J., Bruno, D. L., Riley, L. G., Christodoulou, J., Kirk, E. P., Boneh, A., DeGennaro, C. M., Springer, M., Mootha, V. K., Rouault, T. A., Leimkuhler, S., Thorburn, D. R., and Compton, A. G. (2013) Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes, Hum. Mol. Genet., 22, 4460–4473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saha, P. P., Srivastava, S., Kumar, S. K. P., Sinha, D., and D’Silva, P. (2015) Mapping key residues of ISD11 critical for NFS1-ISD11 subcomplex stability: implications in the development of mitochondrial disorder, COXPD19, J. Biol. Chem., 290, 25876–25890.

    Article  CAS  PubMed  Google Scholar 

  61. Page, C. C., Moser, C. C., Chen, X., and Dutton, P. L. (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction, Nature, 402, 47–52.

    Article  CAS  PubMed  Google Scholar 

  62. Ohnishi, T. (1975) Thermodynamic and EPR characterization of iron-sulfur centers in the NADH-ubiquinone segment of the mitochondrial respiratory chain in pigeon heart, Biochim. Biophys. Acta, 387, 475–490.

    Article  CAS  PubMed  Google Scholar 

  63. Nakamaru-Ogiso, E. (2012) Iron-sulfur clusters in complex I, in A Structural Perspective on Respiratory Complex I (Sazanov, L., ed.) Springer, The Netherlands, pp. 61–79.

    Chapter  Google Scholar 

  64. Pohl, T., Bauer, T., Dorner, K., Stolpe, S., Sell, P., Zocher, G., and Friedrich, T. (2007) Iron-sulfur cluster N7 of the NADH:ubiquinone oxidoreductase (complex I) is essential for stability but not involved in electron transfer, Biochemistry, 46, 6588–6596.

    Article  CAS  PubMed  Google Scholar 

  65. Tocilescu, M. A., Fendel, U., Zwicker, K., Drose, S., Kerscher, S., and Brandt, U. (2010) The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction, Biochim. Biophys. Acta, 1797, 625–632.

    Article  CAS  PubMed  Google Scholar 

  66. Tocilescu, M. A., Zickermann, V., Zwicker, K., and Brandt, U. (2010) Quinone binding and reduction by respiratory complex I, Biochim. Biophys. Acta, 1797, 1883–1890.

    Article  CAS  PubMed  Google Scholar 

  67. Friedrich, T., Hellwig, P., and Einsle, O. (2012) On the mechanism of the respiratory complex I, in A Structural Perspective on Respiratory Complex I (Sazanov, L., ed.) Springer, The Netherlands, pp. 23–59.

    Chapter  Google Scholar 

  68. Hinchliffe, P., Carroll, J., and Sazanov, L. A. (2006) Identification of a novel subunit of respiratory complex I from Thermus thermophilus, Biochemistry, 45, 4413–4420.

    Article  CAS  PubMed  Google Scholar 

  69. Sazanov, L. A., and Hinchliffe, P. (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus, Science, 311, 1430–1436.

    Article  CAS  PubMed  Google Scholar 

  70. Ohnishi, T. (1998) Iron-sulfur clusters/semiquinones in complex I, Biochim. Biophys. Acta, 1364, 186–206.

    Article  CAS  PubMed  Google Scholar 

  71. Hayashi, T., and Stuchebrukhov, A. A. (2010) Electron tunneling in respiratory complex I, Proc. Natl. Acad. Sci. USA, 107, 19157–19162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kmita, K., Wirth, C., Warnau, J., Guerrero-Castillo, S., Hunte, C., Hummer, G., Kaila, V. R., Zwicker, K., Brandt, U., and Zickermann, V. (2015) Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I, Proc. Natl. Acad. Sci. USA, 112, 5685–5690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohnishi, T., and Salerno, J. C. (2005) Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I), FEBS Lett., 579, 4555–4561.

    Article  CAS  PubMed  Google Scholar 

  74. Zwicker, K., Galkin, A., Drose, S., Grgic, L., Kerscher, S., and Brandt, U. (2006) The Redox-Bohr group associated with iron-sulfur cluster N2 of complex I, J.Biol. Chem., 281, 23013–23017.

    Article  CAS  PubMed  Google Scholar 

  75. Yano, T., Dunham, W. R., and Ohnishi, T. (2005) Characterization of the delta muH+-sensitive ubisemiquinone species (SQ(Nf)) and the interaction with cluster N2: new insight into the energy-coupled electron transfer in complex I, Biochemistry, 44, 1744–1754.

    Article  CAS  PubMed  Google Scholar 

  76. Nakamaru-Ogiso, E., Narayanan, M., and Sakyiama, J. A. (2014) Roles of semiquinone species in proton pumping mechanism by complex I, J.Bioenerg. Biomembr., 46, 269–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sazanov, L. A. (2007) Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain, Biochemistry, 46, 2275–2288.

    Article  CAS  PubMed  Google Scholar 

  78. Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M., and Rao, Z. (2005) Crystal structure of mitochondrial respiratory membrane protein complex II, Cell, 121, 1043–1057.

    Article  CAS  PubMed  Google Scholar 

  79. Iverson, T. M. (2013) Catalytic mechanisms of complex IIenzymes: a structural perspective, Biochim. Biophys. Acta, 1827, 648–657.

    Article  CAS  PubMed  Google Scholar 

  80. Van Vranken, J. G., Na, U., Winge, D. R., and Rutter, J. (2015) Protein-mediated assembly of succinate dehydrogenase and its cofactors, Crit. Rev. Biochem. Mol. Biol., 50, 168–180.

    Article  PubMed  CAS  Google Scholar 

  81. Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S., and Jap, B. K. (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex, Science, 281, 64–71.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., Hung, L. W., Crofts, A. R., Berry, E. A., and Kim, S. H. (1998) Electron transfer by domain movement in cytochrome bc1, Nature, 392, 677–684.

    Article  CAS  PubMed  Google Scholar 

  83. Akiba, T., Toyoshima, C., Matsunaga, T., Kawamoto, M., Kubota, T., Fukuyama, K., Namba, K., and Matsubara, H. (1996) Three-dimensional structure of bovine cytochrome bc1 complex by electron cryomicroscopy and helical image reconstruction, Nat. Struct. Biol., 3, 553–561.

    Article  CAS  PubMed  Google Scholar 

  84. Xia, D., Esser, L., Tang, W. K., Zhou, F., Zhou, Y., Yu, L., and Yu, C. A. (2013) Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function, Biochim. Biophys. Acta, 1827, 1278–1294.

    Article  CAS  PubMed  Google Scholar 

  85. Cooley, J. W. (2013) Protein conformational changes involved in the cytochrome bc1 complex catalytic cycle, Biochim. Biophys. Acta, 1827, 1340–1345.

    Article  CAS  PubMed  Google Scholar 

  86. Gurung, B., Yu, L., Xia, D., and Yu, C. A. (2005) The ironsulfur cluster of the Rieske iron-sulfur protein functions as a proton-exiting gate in the cytochrome bc(1) complex, J. Biol. Chem., 280, 24895–24902.

    Article  CAS  PubMed  Google Scholar 

  87. Iwata, S., Saynovits, M., Link, T. A., and Michel, H. (1996) Structure of a water soluble fragment of the “Rieske” iron-sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 Å resolution, Structure, 4, 567–579.

    Article  CAS  PubMed  Google Scholar 

  88. Link, T. A., and Iwata, S. (1996) Functional implications of the structure of the “Rieske” iron-sulfur protein of bovine heart mitochondrial cytochrome bc1 complex, Biochim. Biophys. Acta, 1275, 54–60.

    Article  PubMed  Google Scholar 

  89. Smith, J. L., Zhang, H., Yan, J., Kurisu, G., and Cramer, W. A. (2004) Cytochrome bc complexes: a common core of structure and function surrounded by diversity in the outlying provinces, Curr. Opin. Struct. Biol., 14, 432–439.

    Article  CAS  PubMed  Google Scholar 

  90. Esser, L., Gong, X., Yang, S., Yu, L., Yu, C. A., and Xia, D. (2006) Surface-modulated motion switch: capture and release of iron-sulfur protein in the cytochrome bc1 complex, Proc. Natl. Acad. Sci. USA, 103, 13045–13050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Berry, E. A., De Bari, H., and Huang, L. S. (2013) Unanswered questions about the structure of cytochrome bc1 complexes, Biochim. Biophys. Acta, 1827, 1258–1277.

    Article  CAS  PubMed  Google Scholar 

  92. Borek, A., Kuleta, P., Ekiert, R., Pietras, R., Sarewicz, M., and Osyczka, A. (2015) Mitochondrial disease-related mutation G167P in cytochrome b of rhodobacter capsulatus cytochrome bc1 (S151P in human) affects the equilibrium distribution of [2Fe-2S] cluster and generation of superoxide, J. Biol. Chem., 290, 23781–23792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sanchez, E., Lobo, T., Fox, J. L., Zeviani, M., Winge, D. R., and Fernandez-Vizarra, E. (2013) LYRM7/MZM1L is a UQCRFS1 chaperone involved in the last steps of mitochondrial Complex III assembly in human cells, Biochim. Biophys. Acta, 1827, 285–293.

    Article  CAS  PubMed  Google Scholar 

  94. Lehninger, A. L., Nelson, D. L., and Cox, M. M. (2013) Lehninger Principles of Biochemistry, 6th Edn., W.H. Freeman, New York.

    Google Scholar 

  95. Robbins, A. H., and Stout, C. D. (1989) The structure of aconitase, Proteins, 5, 289–312.

    Article  CAS  PubMed  Google Scholar 

  96. Robbins, A. H., and Stout, C. D. (1989) Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal, Proc. Natl. Acad. Sci. USA, 86, 3639–3643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lauble, H., Kennedy, M. C., Beinert, H., and Stout, C. D. (1992) Crystal structures of aconitase with isocitrate and nitroisocitrate bound, Biochemistry, 31, 2735–2748.

    Article  CAS  PubMed  Google Scholar 

  98. Talib, J., and Davies, M. J. (2016) Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells, J. Biol. Inorg. Chem., 21, 305–317.

    Article  CAS  PubMed  Google Scholar 

  99. Myers, C. R., Antholine, W. E., and Myers, J. M. (2010) The pro-oxidant chromium(VI) inhibits mitochondrial complex I, complex II,and aconitase in the bronchial epithelium: EPR markers for Fe-S proteins, Free Radic. Biol. Med., 49, 1903–1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Han, D., Canali, R., Garcia, J., Aguilera, R., Gallaher, T. K., and Cadenas, E. (2005) Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione, Biochemistry, 44, 11986–11996.

    Article  CAS  PubMed  Google Scholar 

  101. Beinert, H., and Kennedy, M. C. (1993) Aconitase, a twofaced protein: enzyme and iron regulatory factor, FASEB J., 7, 1442–1449.

    CAS  PubMed  Google Scholar 

  102. Eisenstein, R. S. (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism, Annu. Rev. Nutr., 20, 627–662.

    Article  CAS  PubMed  Google Scholar 

  103. Hentze, M. W., and Kuhn, L. C. (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress, Proc. Natl. Acad. Sci. USA, 93, 8175–8182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cairo, G., Recalcati, S., Pietrangelo, A., and Minotti, G. (2002) The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage, Free Radic. Biol. Med., 32, 1237–1243.

    Article  CAS  PubMed  Google Scholar 

  105. Chen, X. J., Wang, X., Kaufman, B. A., and Butow, R. A. (2005) Aconitase couples metabolic regulation to mitochondrial DNA maintenance, Science, 307, 714–717.

    Article  CAS  PubMed  Google Scholar 

  106. Ferrer, M., Golyshina, O. V., Beloqui, A., Golyshin, P. N., and Timmis, K. N. (2007) The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated, Nature, 445, 91–94.

    Article  CAS  PubMed  Google Scholar 

  107. White, M. F., and Dillingham, M. S. (2012) Iron-sulphur clusters in nucleic acid processing enzymes, Curr. Opin. Struct. Biol., 22, 94–100.

    Article  CAS  PubMed  Google Scholar 

  108. Boal, A. K., Yavin, E., and Barton, J. K. (2007) DNA repair glycosylases with a [4Fe-4S] cluster: a redox cofactor for DNA-mediated charge transport? J. Inorg. Biochem., 101, 1913–1921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Genereux, J. C., Boal, A. K., and Barton, J. K. (2010) DNA-mediated charge transport in redox sensing and signaling, J. Am. Chem. Soc., 132, 891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Atta, M., Mulliez, E., Arragain, S., Forouhar, F., Hunt, J. F., and Fontecave, M. (2010) S-adenosylmethioninedependent radical-based modification of biological macromolecules, Curr. Opin. Struct. Biol., 20, 684–692.

    Article  CAS  PubMed  Google Scholar 

  111. Liu, H., Rudolf, J., Johnson, K. A., McMahon, S. A., Oke, M., Carter, L., McRobbie, A. M., Brown, S. E., Naismith, J. H., and White, M. F. (2008) Structure of the DNA repair helicase XPD, Cell, 133, 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu, Y., Sommers, J. A., Suhasini, A. N., Leonard, T., Deakyne, J. S., Mazin, A. V., Shin-Ya, K., Kitao, H., and Brosh, R. M., Jr. (2010) Fanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein–DNA complexes, Blood, 116, 3780–3791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Landry, A. P., and Ding, H. (2014) The N-terminal domain of human DNA helicase Rtel1 contains a redox active iron-sulfur cluster, Biomed Res. Int., 285791.

    Google Scholar 

  114. Capo-Chichi, J. M., Bharti, S. K., Sommers, J. A., Yammine, T., Chouery, E., Patry, L., Rouleau, G. A., Samuels, M. E., Hamdan, F. F., Michaud, J. L., Brosh, R. M., Jr., Megarbane, A., and Kibar, Z. (2013) Identification and biochemical characterization of a novel mutation in DDX11 causing Warsaw breakage syndrome, Hum. Mutat., 34, 103–107.

    Article  CAS  PubMed  Google Scholar 

  115. Yeeles, J. T., Cammack, R., and Dillingham, M. S. (2009) An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases, J. Biol. Chem., 284, 7746–7755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Budd, M. E., Reis, C. C., Smith, S., Myung, K., and Campbell, J. L. (2006) Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta, Mol. Cell. Biol., 26, 2490–2500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Burgers, P. M., Stith, C. M., Yoder, B. L., and Sparks, J. L. (2010) Yeast exonuclease 5 is essential for mitochondrial genome maintenance, Mol. Cell. Biol., 30, 1457–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sparks, J. L., Kumar, R., Singh, M., Wold, M. S., Pandita, T. K., and Burgers, P. M. (2012) Human exonuclease 5 is a novel sliding exonuclease required for genome stability, J. Biol. Chem., 287, 42773–42783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, J., Kasciukovic, T., and White, M. F. (2012) The CRISPR associated protein Cas4 is a 5' to 3' DNA exonuclease with an iron-sulfur cluster, PLoS One, 7, e47232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lemak, S., Beloglazova, N., Nocek, B., Skarina, T., Flick, R., Brown, G., Popovic, A., Joachimiak, A., Savchenko, A., and Yakunin, A. F. (2013) Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S] cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus, J. Am. Chem. Soc., 135, 17476–17487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lemak, S., Nocek, B., Beloglazova, N., Skarina, T., Flick, R., Brown, G., Joachimiak, A., Savchenko, A., and Yakunin, A. F. (2014) The CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe-2S] cluster: crystal structure and nuclease activity, Nucleic Acids Res., 42, 11144–11155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tuteja, N., and Tuteja, R. (2004) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery, Eur. J. Biochem., 271, 1835–1848.

    Article  CAS  PubMed  Google Scholar 

  123. White, M. F. (2009) Structure, function and evolution of the XPD family of iron-sulfur-containing 5'→3' DNA helicases, Biochem. Soc. Trans., 37, 547–551.

    Article  CAS  PubMed  Google Scholar 

  124. Wu, Y., and Brosh, R. M., Jr. (2012) DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster, Nucleic Acids Res., 40, 4247–4260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Suhasini, A. N., and Brosh, R. M., Jr. (2013) DNA helicases associated with genetic instability, cancer, and aging, Adv. Exp. Med. Biol., 767, 123–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rudolf, J., Makrantoni, V., Ingledew, W. J., Stark, M. J., and White, M. F. (2006) The DNA repair helicases XPD and FancJ have essential iron-sulfur domains, Mol. Cell, 23, 801–808.

    Article  CAS  PubMed  Google Scholar 

  127. Fan, L., Fuss, J. O., Cheng, Q. J., Arvai, A. S., Hammel, M., Roberts, V. A., Cooper, P. K., and Tainer, J. A. (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations, Cell, 133, 789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wolski, S. C., Kuper, J., Hanzelmann, P., Truglio, J. J., Croteau, D. L., Van Houten, B., and Kisker, C. (2008) Crystal structure of the Fe-S cluster-containing nucleotide excision repair helicase XPD, PLoS Biol., 6, e149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Pugh, R. A., Honda, M., Leesley, H., Thomas, A., Lin, Y., Nilges, M. J., Cann, I. K., and Spies, M. (2008) The ironcontaining domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA–doublestranded DNA junction, J. Biol. Chem., 283, 1732–1743.

    Article  CAS  PubMed  Google Scholar 

  130. Sommers, J. A., Banerjee, T., Hinds, T., Wan, B., Wold, M. S., Lei, M., and Brosh, R. M., Jr. (2014) Novel function of the Fanconi anemia group J or RECQ1 helicase to disrupt protein–DNA complexes in a replication protein A-stimulated manner, J. Biol. Chem., 289, 19928–19941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mishra, N. C. (1995) Molecular Biology of Nucleases, CRC Press, Boca Raton.

    Google Scholar 

  132. Sisakova, E., Weiserova, M., Dekker, C., Seidel, R., and Szczelkun, M. D. (2008) The interrelationship of helicase and nuclease domains during DNA translocation by the molecular motor EcoR124I, J. Mol. Biol., 384, 1273–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wigley, D. B. (2013) Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB, Nat. Rev. Microbiol., 11, 9–13.

    CAS  PubMed  Google Scholar 

  134. Zheng, L., Zhou, M., Guo, Z., Lu, H., Qian, L., Dai, H., Qiu, J., Yakubovskaya, E., Bogenhagen, D. F., Demple, B., and Shen, B. (2008) Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates, Mol. Cell, 32, 325–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Duxin, J. P., Dao, B., Martinsson, P., Rajala, N., Guittat, L., Campbell, J. L., Spelbrink, J. N., and Stewart, S. A. (2009) Human Dna2 is a nuclear and mitochondrial DNA maintenance protein, Mol. Cell. Biol., 29, 4274–4282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kang, Y. H., Lee, C. H., and Seo, Y. S. (2010) Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes, Crit. Rev. Biochem. Mol. Biol., 45, 71–96.

    Article  CAS  PubMed  Google Scholar 

  137. Taha, T. A., Kitatani, K., El-Alwani, M., Bielawski, J., Hannun, Y. A., and Obeid, L. M. (2006) Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis, FASEB J., 20, 482–484.

    CAS  PubMed  Google Scholar 

  138. Abou-Ghali, M., and Stiban, J. (2015) Regulation of ceramide channel formation and disassembly: insights on the initiation of apoptosis, Saudi J. Biol. Sci., 22, 760–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stiban, J., and Perera, M. (2015) Very long chain ceramides interfere with C16-ceramide-induced channel formation: a plausible mechanism for regulating the initiation of intrinsic apoptosis, Biochim. Biophys. Acta, 1848, 561–567.

    Article  CAS  PubMed  Google Scholar 

  140. Wiley, S. E., Murphy, A. N., Ross, S. A., Van der Geer, P., and Dixon, J. E. (2007) MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity, Proc. Natl. Acad. Sci. USA, 104, 5318–5323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kusminski, C. M., Holland, W. L., Sun, K., Park, J., Spurgin, S. B., Lin, Y., Askew, G. R., Simcox, J. A., McClain, D. A., Li, C., and Scherer, P. E. (2012) MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity, Nat. Med., 18, 1539–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Landry, A. P., and Ding, H. (2014) Redox control of human mitochondrial outer membrane protein MitoNEET [2Fe-2S] clusters by biological thiols and hydrogen peroxide, J. Biol. Chem., 289, 4307–4315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Via, A., Ferre, F., Brannetti, B., Valencia, A., and HelmerCitterich, M. (2000) Three-dimensional view of the surface motif associated with the P-loop structure: cis and trans cases of convergent evolution, J. Mol. Biol., 303, 455–465.

    Article  CAS  PubMed  Google Scholar 

  144. Lipper, C. H., Paddock, M. L., Onuchic, J. N., Mittler, R., Nechushtai, R., and Jennings, P. A. (2015) Cancerrelated NEET proteins transfer 2Fe-2S clusters to anamorsin, a protein required for cytosolic iron-sulfur cluster biogenesis, PLoS One, 10, e0139699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Golinelli-Cohen, M. P., Lescop, E., Mons, C., Goncalves, S., Clemancey, M., Santolini, J., Guittet, E., Blondin, G., Latour, J. M., and Bouton, C. (2016) Redox control of the human iron-sulfur repair protein MitoNEET activity via its iron-sulfur cluster, J. Biol. Chem., 291, 7583–7593.

    Article  CAS  PubMed  Google Scholar 

  146. Ferecatu, I., Goncalves, S., Golinelli-Cohen, M. P., Clemancey, M., Martelli, A., Riquier, S., Guittet, E., Latour, J. M., Puccio, H., Drapier, J. C., Lescop, E., and Bouton, C. (2014) The diabetes drug target MitoNEET governs a novel trafficking pathway to rebuild an Fe-S cluster into cytosolic aconitase/iron regulatory protein 1, J. Biol. Chem., 289, 28070–28086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shulga, N., and Pastorino, J. G. (2014) Mitoneet mediates TNFalpha-induced necroptosis promoted by exposure to fructose and ethanol, J. Cell Sci., 127, 896–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sohn, Y. S., Tamir, S., Song, L., Michaeli, D., Matouk, I., Conlan, A. R., Harir, Y., Holt, S. H., Shulaev, V., Paddock, M. L., Hochberg, A., Cabanchick, I. Z., Onuchic, J. N., Jennings, P. A., Nechushtai, R., and Mittler, R. (2013) NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth, Proc. Natl. Acad. Sci. USA, 110, 14676–14681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shimizu, R., Lan, N. N., Tai, T. T., Adachi, Y., Kawazoe, A., Mu, A., and Taketani, S. (2014) p53 directly regulates the transcription of the human frataxin gene and its lack of regulation in tumor cells decreases the utilization of mitochondrial iron, Gene, 551, 79–85.

    Article  CAS  PubMed  Google Scholar 

  150. Shakoury-Elizeh, M., Protchenko, O., Berger, A., Cox, J., Gable, K., Dunn, T. M., Prinz, W. A., Bard, M., and Philpott, C. C. (2010) Metabolic response to iron deficiency in Saccharomyces cerevisiae, J. Biol. Chem., 285, 14823–14833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang, Z., Wang, W. E., and Zhang, Q. (2013) CIAPIN1 siRNA inhibits proliferation, migration and promotes apoptosis of VSMCs by regulating Bcl-2 and Bax, Curr. Neurovasc. Res., 10, 4–10.

    Article  PubMed  Google Scholar 

  152. Banci, L., Ciofi-Baffoni, S., Mikolajczyk, M., Winkelmann, J., Bill, E., and Pandelia, M. E. (2013) Human anamorsin binds [2Fe-2S] clusters with unique electronic properties, J. Biol. Inorg. Chem., 18, 883–893.

    Article  CAS  PubMed  Google Scholar 

  153. Netz, D. J., Stumpfig, M., Dore, C., Muhlenhoff, U., Pierik, A. J., and Lill, R. (2010) Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis, Nat. Chem. Biol., 6, 758–765.

    Article  CAS  PubMed  Google Scholar 

  154. Vernis, L., Facca, C., Delagoutte, E., Soler, N., Chanet, R., Guiard, B., Faye, G., and Baldacci, G. (2009) A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast, PLoS One, 4, e4376.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johnny Stiban or Laurie S. Kaguni.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 10, pp. 1332–1348.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiban, J., So, M. & Kaguni, L.S. Iron-sulfur clusters in mitochondrial metabolism: Multifaceted roles of a simple cofactor. Biochemistry Moscow 81, 1066–1080 (2016). https://doi.org/10.1134/S0006297916100059

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100059

Key words

Navigation