Skip to main content
Log in

Structure, chaperone activity, and aggregation of wild-type and R12C mutant αB-crystallins in the presence of thermal stress and calcium ion – Implications for role of calcium in cataract pathogenesis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The current study was performed with the aim to evaluate the chaperoning ability, structural features, and aggregation propensity of wild-type and R12C mutant αB-crystallins (αB-Cry) under thermal stress and in the presence of calcium ion. The results of different spectroscopic analyses suggest that wild-type and mutant αB-Cry have dissimilar secondary and tertiary structures. Moreover, αB-Cry indicates slightly improved chaperone activity upon the R12C mutation. Thermal stress and calcium, respectively, enhance and reduce the extent of solvent-exposed hydrophobic surfaces accompanying formation of ordered and non-ordered aggregate entities in both proteins. Compared to the wild-type protein, the R12C mutant counterpart shows significant resistance against thermal and calcium-induced aggregation. In addition, in the presence of calcium, significant structural variation was accompanied by reduction in the solvent-exposed hydrophobic patches and attenuation of chaperone activity in both proteins. Additionally, gel mobility shift assay indicates the intrinsic propensity of R12C mutant αB-Cry for disulfide bridge-mediated protein dimerization. Overall, the results of this study are of high significance for understanding the molecular details of different factors that are involved in the pathomechanism of cataract disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laganowsky, A., Benesch, J. L., Landau, M., Ding, L., Sawaya, M. R., Cascio, D., Huang, Q., Robinson, C. V., Horwitz, J., and Eisenberg, D. (2010) Crystal structures of truncated alpha A and alpha B crystallins reveal structural mechanisms of polydispersity important for eye lens function, Protein Sci., 19, 1031–1043.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Horwitz, J. (2003) Alpha-crystallin, Invest. Exp. Eye Res., 76, 10–22.

    Google Scholar 

  3. Van Boekel, M. A., De Lange, F., De Grip, W. J., and De Jong, W. W. (1999) Eye lens αA-and αB-crystallin: complex stability versus chaperone-like activity, Biochim. Biophys. Acta, 1434, 114–123.

    Article  PubMed  Google Scholar 

  4. Clark, J. I., and Muchowski, P. J. (2000) Small heat-shock proteins and their potential role in human disease, Curr. Opin. Struct. Biol., 10, 52–59.

    Article  CAS  PubMed  Google Scholar 

  5. Jedziniak, J. A., Kinoshita, J. H., Yates, E. M., Hocker, L. O., and Benedek, G. B. (1972) Calcium-induced aggregation of bovine lens alpha crystallins, Invest. Ophthalmol. Vis. Sci., 11, 905–915.

    CAS  Google Scholar 

  6. Testa, M., Fiore, C., Bocci, N., and Calabro, S. (1968) Effect of the oxidation of sulfhydryl groups on lens proteins, Exp. Eye Res., 7, 276–290.

    Article  CAS  PubMed  Google Scholar 

  7. Ganadu, M. L., Aru, M., Mura, G. M., Coi, A., Mlynarz, P., and Kozlowski, H. (2004) Effects of divalent metal ions on the αB-crystallin chaperone-like activity: spectroscopic evidence for a complex between copper (II) and protein, J. Inorg. Biochem., 98, 1103–1109.

    Article  CAS  PubMed  Google Scholar 

  8. Del Valle, L. J., Escribano, C., Perez, J. J., and Garriga, P. (2002) Calcium-induced decrease of the thermal stability and chaperone activity of α-crystallin, Biochim. Biophys. Acta, 1601, 100–109.

    Article  CAS  PubMed  Google Scholar 

  9. Moyano, J. V., Evans, J. R., Chen, F., Lu, M., Werner, M. E., Yehiely, F., Diaz, L. K., Turbin, D., Karaka, G., Weily, E., Nielsen, T. O., Perou, C. M., and Cryns, V. L. (2006) αB-Crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer, J. Clin. Invest., 116, 261–270.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Chebotareva, N. A., Eronina, T. B., Sluchanko, N. N., and Kurganov, B. I. (2015) Effect of Ca2+ and Mg2+ ions on oligomeric state and chaperone-like activity of αB-crystallin in crowded media, Int. J. Biol. Macromol., 76, 86–93.

    Article  CAS  PubMed  Google Scholar 

  11. Hawse, J. R., Cumming, J. R., Oppermann, B., Sheets, N. L., Reddy, V. N., and Kantorow, M. (2003) Activation of metallothioneins and α-crystallin/sHSPs in human lens epithelial cells by specific metals and the metal content of aging clear human lenses, Invest. Ophthalmol. Vis. Sci., 44, 672–679.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hightower, K. R., Leverenz, V., and Reddy, V. N. (1980) Calcium transport in the lens, Invest. Ophthalmol. Vis. Sci., 19, 1059–1066.

    CAS  PubMed  Google Scholar 

  13. Borchman, D., Delamere, N. A., and Paterson, C. A. (1988) Ca-ATPase activity in the rabbit and bovine lens, Invest. Ophthalmol. Vis. Sci., 29, 982–987.

    CAS  PubMed  Google Scholar 

  14. Tang, D., Borchman, D., Yappert, M. C., Vrensen, G. F., and Rasi, V. (2003) Influence of age, diabetes, and cataract on calcium, lipid–calcium, and protein–calcium relationships in human lenses, Invest. Ophthalmol. Vis. Sci., 44, 2059–2066.

    PubMed  Google Scholar 

  15. Biswas, S., Harris, F., Singh, J., and Phoenix, D. (2004) Role of calpains in diabetes mellitus-induced cataractogenesis: a mini review, Mol. Cell. Biochem., 261, 151–159.

    Article  CAS  PubMed  Google Scholar 

  16. Mainz, A., Bardiaux, B., Kupller, F., Multhaup, G., Felli, I. C., Pierattelli, R., and Reif, B. (2012) Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin, J. Biol. Chem., 287, 1128–1138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., and Sheu, S. S. (2004) Calcium, ATP, and ROS: a mitochondrial love–hate triangle, Am. J. Physiol. Cell Physiol., 287, 817–833.

    Google Scholar 

  18. Nagaraj, R. H., Panda, A. K., Santhoshkumar, S., Santhoshkumar, P., Pasupuleti, N., Wang, B., and Biswas, A. (2012) Hydroimidazolone modification of the conserved Arg12 in small heat shock proteins: studies on the structure and chaperone function using mutant mimics, PloS One, 7, e30257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Plater, M. L., Goode, D., and Cerabbe, M. J. (1996) Effects of site-directed mutations on the chaperone-like activity of αB-crystallin, J. Biol. Chem., 271, 28558–28566.

    Article  CAS  PubMed  Google Scholar 

  20. Ahmad, M. F., Raman, B., Ramakrishna, T., and Rao, Ch. M. (2008) Effect of phosphorylation on αB-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of αB-crystallin and its phosphorylation-mimicking mutant, J. Mol. Biol., 375, 1040–1051.

    Article  CAS  PubMed  Google Scholar 

  21. Boelens, W. C., Croes, Y., De Ruwe, M., De Reu, L., and De Jong, W. W. (1998) Negative charges in the C-terminal domain stabilize the αB-crystallin complex, J. Biol. Chem., 273, 28085–28090.

    Article  CAS  PubMed  Google Scholar 

  22. Biswas, A., and Das, K. P. (2004) Role of ATP on the interaction of α-crystallin with its substrates and its implications for the molecular chaperone function, J. Biol. Chem., 279, 42648–42657.

    Article  CAS  PubMed  Google Scholar 

  23. Sun, T. X., Das, B. K., and Liang, J. J. (1997) Conformational and functional differences between recombinant human lens αAand αB-crystallin, J. Biol. Chem., 272, 6220–6225.

    Article  CAS  PubMed  Google Scholar 

  24. Yousefi, R., Khazaei, S., and Moosavi-Movahedi, A. A. (2013) Effect of homocysteinylation on structure, chaperone activity and fibrillation propensity of lens alpha-crystallin, Protein Pept. Lett., 20, 932–941.

    CAS  PubMed  Google Scholar 

  25. Khalili-Hezarjaribi, H., Yousefi, R., and MoosaviMovahedi, A. A. (2012) Effect of temperature and ionic strength on structure and chaperone activity of glycated and non-glycated alpha-crystallin, Protein Pept. Lett., 19, 450–457.

    Article  CAS  PubMed  Google Scholar 

  26. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  27. Ghahramani, M., Yousefi, R., Khoshaman, K., and Alavianmehr, M. M. (2015) The impact of calcium ion on structure and aggregation propensity of peroxynitrite-modified lens crystallins: new insights into the pathogenesis of cataract disorders, Colloids Surf. B Biointerfaces, 125, 170–180.

    Article  CAS  PubMed  Google Scholar 

  28. Paoli, P., Sbrana, F., Tiribilli, B., Caselli, A., Pantera, B., Cirri, P., De Donatis, A., Formigli, L., Nosi, D., Manao, G., Camici, G., and Ramponi, G. (2010) Protein Nhomocysteinylation induces the formation of toxic amyloid-like protofibrils, J. Mol. Biol., 400, 889–907.

    Article  CAS  PubMed  Google Scholar 

  29. Kelly, S. M., Jess, T. J., and Price, N. C. (2005) How to study proteins by circular dichroism, Biochim. Biophys. Acta, 1751, 119–139.

    Article  CAS  PubMed  Google Scholar 

  30. Liang, J., and Rossi, M. (1989) Near-ultraviolet circular dichroism of bovine high molecular weight α-crystallin, Invest. Ophthalmol. Vis. Sci., 30, 2065–2068.

    CAS  PubMed  Google Scholar 

  31. Bohm, G., Muhr, R., and Jaenicke, R. (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks, Protein Eng., 5, 191–195.

    Article  CAS  PubMed  Google Scholar 

  32. Liang, J. J., Sun, T. X., and Akhtar, N. J. (2000) Heatinduced conformational change of human lens recombinant αAand αB-crystallins, Mol. Vis., 6, 10–14.

    CAS  PubMed  Google Scholar 

  33. Schagger, H. (2006) Tricine–SDS-PAGE, Nat. Protoc., 1, 16–22.

    Article  PubMed  Google Scholar 

  34. Berengian, A. R., Bova, M. P., and Mchaourab, H. S. (1997) Structure and function of the conserved domain in αA-crystallin. Site-directed spin labeling identifies a βstrand located near a subunit interface, Biochemistry, 36, 9951–9957.

    Article  CAS  PubMed  Google Scholar 

  35. Litt, M., Kramer, P., LaMorticella, D. M., Murphey, W., Lovrien, E. W., and Weleber, R. G. (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA, Hum. Mol. Genet., 7, 471–474.

    Article  CAS  PubMed  Google Scholar 

  36. Devi, R. R., Yao, W., Vijayalakshmi, P., Sergeev, Y. V., Sundaresan, P., and Hejtmancik, J. F. (2008) Crystallin gene mutations in Indian families with inherited pediatric cataract, Mol. Vis., 14, 1157–1170.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Biswas, A., Miller, A., Oya-Ito, T., Santhoshkumar, P., Bhat, M., and Nagaraj, R. H. (2006) Effect of site-directed mutagenesis of methylglyoxal-modifiable arginine residues on the structure and chaperone function of human RAcrystallin, Biochemistry, 45, 4569–4577.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kurganov, B. I. (2002) Kinetics of protein aggregation. Quantitative estimation of the chaperone-like activity in test-systems based on suppression of protein aggregation, Biochemistry (Moscow), 67, 409–422.

    Article  CAS  Google Scholar 

  39. Kurganov, B. I. (2013) Antiaggregation activity of chaperones and its quantification, Biochemistry (Moscow), 78, 1554–1566.

    Article  CAS  Google Scholar 

  40. Mao, Y. W., Liu, J. P., Xiang, H., and Li, D. W. (2004) Human αAand αB-crystallins bind to Bax and Bcl-XS to sequester their translocation during staurosporine induced apoptosis, Cell Death Differ., 11, 512–526.

    Article  CAS  PubMed  Google Scholar 

  41. Cumming, R. C., Andon, N. L., Haynes, P. A., Park, M., Fischer, W. H., and Schubert, D. (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress, J. Biol. Chem., 279, 21749–21758.

    Article  CAS  PubMed  Google Scholar 

  42. Yu, N. T., De Nagel, D. C., Pruett, P. L., and Kuck, J. F. (1985) Disulfide bond formation in the eye lens, Proc. Natl. Acad. Sci. USA, 82, 7965–7968.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yousefi.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 2, pp. 215–230.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-282, December 27, 2015.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragerdi Kashani, M., Yousefi, R., Akbarian, M. et al. Structure, chaperone activity, and aggregation of wild-type and R12C mutant αB-crystallins in the presence of thermal stress and calcium ion – Implications for role of calcium in cataract pathogenesis. Biochemistry Moscow 81, 122–134 (2016). https://doi.org/10.1134/S0006297916020061

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916020061

Key words

Navigation