Skip to main content
Log in

Influence of 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on oxidative status in rats with protamine sulfate-induced hyperglycemia

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

An influence of 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on oxidative status and activity of some antioxidant enzymes in the liver and blood serum from rats was examined during experimental hyperglycemia developed after injecting protamine sulfate. It was found that SkQ1 lowered glycemic level in rats treated with protamine sulfate. Moreover, it was also accompanied by restoration of the normal range of biochemiluminescence parameters indicating the rate of ongoing free radical processes, magnitude of primary products of lipid peroxidation such as diene conjugates, activity of aconitate hydratase, and level of citrate in rat liver and blood. Hence, it was demonstrated that activity of superoxide dismutase and catalase, increasing during hyperglycemia, was decreased after administering SkQ1. This might be related to the ability of SkQ1 to normalize free-radical homeostasis imbalanced during hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BCL:

biochemiluminescence

LPO:

lipid peroxidation

ROS:

reactive oxygen species

SkQ1:

10-(6'-plastoquinonyl)decyltriphenylphosphonium

SOD:

superoxide dismutase

References

  1. Chazova, V. B., and Mychka, V. B. (2003. Metabolic syndrome, type 2 diabetes mellitus and arterial hypertension, Serdtse, 3, 32–38.

    Google Scholar 

  2. Bayzhanova, Zh. Zh., Ignatova, T. M., Severova, M. M., and Burnevich, E. Z. (2012. Hepatic steatosis and insulin resistance during chronic hepatitis C virus infection, Farmateka, 7, 26–29.

    Google Scholar 

  3. Von Frerichs, Fr. Th. (1884) Ueber den Diabetes, Berlin, 272.

    Google Scholar 

  4. Balabolkin, M. I., Kreminskaya, V. M., and Klebanova, E. M. (2005. A role of oxidative stress in pathogenesis of diabetic neuropathy and opportunity for its correction by alipoic acid-containing drugs, Probl. Endokrinol., 51, 22–33.

    Google Scholar 

  5. De Haan, J. B., Stefanovic, N., and Nikolic-Paterson, D. (2005. Kidney expression of glutathione peroxidase-1 is not protective against streptozotocin-induced diabetic nephropathy, Am. J. Physiol. Renal. Physiol., 289, 544–551.

    Article  Google Scholar 

  6. Martinov, M. V. (2010. The logic of the hepatic methionine metabolic cycle, Biochim. Biophys. Acta, 1, 89–96.

    Article  Google Scholar 

  7. Kondrat’ eva, E. I., and Kosyankova, T. V. (2002. Nitric oxide synthase genes in pathogenesis of diabetes mellitus and its complications, Probl. Endokrinol., 2, 33–37.

    Google Scholar 

  8. Voskresensky, O. N. (2002. Antioxidant system, ontogenesis, and aging, Vopr. Med. Khim., 1, 14–27.

    Google Scholar 

  9. Alonso-Magdalena, P., Ropero, A. B., Soriano, S., Quesada, I., and Nadal, A. (2010. Bisphenol-A: a new diabetogenic factor? Hormones (Athens), 9, 118–126.

    Google Scholar 

  10. Krotz, F. (2009. NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment, Blood, 100, 917–924.

    Article  Google Scholar 

  11. Skulachev, V. P. (2000) Oxygen and Events of Programmed Death [in Russian], IBKh RAMN, Moscow.

    Google Scholar 

  12. Beinert, H. (1986. Iron-sulfur clusters: agents of electron transfer and storage, and direct participants in enzymic reactions, Biochem. Soc. Trans., 14, 527–533.

    Article  CAS  PubMed  Google Scholar 

  13. Eberly, D., Clanke, R., and Kaplowitz, N. (1981. Rapid oxidation in vitro of endogenous and exogenous glutathione in bile of rats, J. Biol. Chem., 256, 2115–2117.

    Google Scholar 

  14. Severin, E. S. (2008) Biochemistry [in Russian], GEOTARMedia, Moscow.

    Google Scholar 

  15. Zanozina, O. V., Borovkov, N. N., and Shcherbatyuk, T. G. (2010. Free radical oxidation during type 2 diabetes mellitus: source of generation comprising pathogenetic mechanisms of toxicity, Sovr. Tekhnol. Med., 3, 104–112.

    Google Scholar 

  16. Kazimirko, V. K., Mal’tsev, V. I., Butylin, V. Yu., and Gorobets, N. I. (2004) Free Radical Oxidation and Antioxidant System [in Russian], Morion, Kiev.

    Google Scholar 

  17. Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2009. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes, Endocrin. Rev., 23, 599–622.

    Article  Google Scholar 

  18. Lin, K. T., Xue, J. Y., and Nomen, M. J. (1995. Peroxynitrite-induced apoptosis in HL-60 cells, Biol. Chem., 270, 16487–16490.

    Article  CAS  Google Scholar 

  19. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 12731287.

    Article  Google Scholar 

  20. Ul’yanov, A. M., and Tarasov, Yu. A. (2000. Pancreatic insular apparatus in animals under chronic heparin deficiency, Vopr. Med. Khim., 2, 149–154.

    Google Scholar 

  21. Kudryashov, B. A., Pytel’, Yu. A., Lyapina, L. A., and Baskakova, G. M. (1981. Insulin–heparin complex and its physiological properties, Vopr. Med. Khim., 27, 547–552.

    CAS  Google Scholar 

  22. Ul’yanov, A. M., Shapiro, F. B., and Lyapina, L. A. (1989. Hypoglycemic activity of insulin–heparin complex and conditions for its manifestation, Patol. Fiziol. Eksp. Ter., 1, 54–56.

    Google Scholar 

  23. Kudryashov, B. A., Ul’yanov, A. M., and Tarasov, Yu. A. (1989. Protamine sulfate enhances diabetogenic effect of alloxan, Vopr. Med. Khim., 35, 128–131.

    CAS  Google Scholar 

  24. Kudrjashov, B. A., Shapiro, F. B., and Ulyanov, A. M. (1987. Role of heparin of realization of hypoglycaemic action of insulin, Acta Physiol. Hung., 69, 197–202.

    CAS  PubMed  Google Scholar 

  25. Ul’yanov, A. M., Shapiro, F. B., and Bazaz’yan, G. G. (1987. Lowered sensitivity to hypoglycemic effects of insulin in animals with reduced concentration of blood heparin, Byul. Eksp. Biol. Med., 103, 522–524.

    Google Scholar 

  26. Stal’naya, I. D. (1977) A Method for Detecting Diene Conjugates of Unsaturated Higher Fatty Acids. Modern Methods in Biochemistry [in Russian], Meditsina, Moscow, pp. 63–64.

    Google Scholar 

  27. Buzlama, B. C., Retskiy, M. I., Meshcheryakov, N. P., and Rogacheva, T. E. (1997) A Textbook on Investigating Lipid Peroxidation Processes and Body Antioxidant Defense System in Animals [in Russian], Voronezh.

    Google Scholar 

  28. Afanas’ev, V. G., Zaytsev, V. S., and Vol’fson, T. I. (1973. To a micromethod of detecting citric acid in the blood serum by photoelectrocolorimeter, Lab. Delo, 4, 115–116.

    Google Scholar 

  29. Matyushina, B. N., Loginov, A. S., and Tkachev, V. D. (1991. Detection of superoxide dismutase activity in samples of needle liver biopsy during chronic hepatic injuries, Lab. Delo, 7, 16–19.

    Google Scholar 

  30. Korolyuk, M. A., Ivanova, L. I., and Mayorova, I. T. (1988. A method for detecting catalase activity, Lab. Delo, 1, 16–19.

    Google Scholar 

  31. Lloyd, E., and Lederman, U. (1990) Guidelines on Applied Statistics [in Russian], Finansy i Statistika, Moscow.

    Google Scholar 

  32. Chistyakov, V. A., Prazdnova, E. V., Gutnikova, L. V., Sazykina, M. A., and Sazykin, I. S. (2012. Superoxide scavenging activity of plastoquinone derivative 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1), Biochemistry (Moscow), 77, 776–778.

    Article  CAS  Google Scholar 

  33. Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Yu., Chernyak, B. V., and Popova, E. N. (2014. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging, 6, 661–674.

    PubMed Central  PubMed  Google Scholar 

  34. Antonenko, Y. N., Roginsky, V. A., Pashkovskaya, A. A., Rokitskaya, T. I., Kotova, E. A., Zaspa, A. A., Chernyak, B. V., and Skulachev, V. P. (2008. Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments, J. Membr. Biol., 222, 141–149.

    Article  CAS  PubMed  Google Scholar 

  35. Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2009. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes, Endocrin. Rev., 23, 599–622.

    Article  Google Scholar 

  36. Murakami, K., and Yoshino, M. (1997. Inactivation of aconitase in yeast exposed to oxidative stress, Biochem. Mol. Biol. Int., 41, 481–486.

    CAS  PubMed  Google Scholar 

  37. Gardner, P. R., Nguyen, D. M., and White, C. W. (1994. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs, Proc. Natl. Acad. Sci. USA, 91, 12248–12252.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Turpaev, K. T. (2002. Reactive oxygen intermediates and gene expression, Biochemistry (Moscow), 67, 281–292.

    Article  CAS  Google Scholar 

  39. Dubinina, E. E. (1995. Characteristics of extracellular superoxide dismutase, Vopr. Med. Khim., 41, 8–12.

    CAS  PubMed  Google Scholar 

  40. Popova, T. N., Agarkov, A. A., and Verevkin, A. N. (2013. Intensity of free radical processes in rat liver during type 2 diabetes mellitus and in response to administered epifamine, Acta Naturae, 5, 129–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Popova.

Additional information

Original Russian Text © Ya. G. Voronkova, T. N. Popova, A. A. Agarkov, M. V. Skulachev, 2015, published in Biokhimiya, 2015, Vol. 80, No. 12, pp. 1871-1879.

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronkova, Y.G., Popova, T.N., Agarkov, A.A. et al. Influence of 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on oxidative status in rats with protamine sulfate-induced hyperglycemia. Biochemistry Moscow 80, 1606–1613 (2015). https://doi.org/10.1134/S0006297915120093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915120093

Keywords

Navigation