Skip to main content
Log in

Role of restriction-modification systems in prokaryotic evolution and ecology

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Restriction–modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution of the specificity of R-M systems. This review focuses on the influence of R-M systems on evolution and ecology of prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pairs

MTase:

DNA-methyltransferase

REase:

restriction endonuclease

R-M system:

restriction–modification system

References

  1. Bickle, T. A. (2004) Restricting restriction, Mol. Microbiol., 51, 3–5.

    Article  CAS  PubMed  Google Scholar 

  2. Loenen, W. A. (2003) Tracking EcoKI and DNA fifty years on: a golden story full of surprises, Nucleic Acids Res., 31, 7059–7069.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction–modification systems in addition to cellular defense, Microbiol. Mol. Biol. Rev., 77, 53–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Roberts, R. J., Belfort, M., Bestor, T., Bhagwat, A. S., Bickle, T. A., Bitinaite, J., Blumenthal, R. M., Degtyarev, S. Kh., Dryden, D. T., Dybvig, K., Firman, K., Gromova, E. S., Gumport, R. I., Halford, S. E., Hattman, S., Heitman, J., Hornby, D. P., Janulaitis, A., Jeltsch, A., Josephsen, J., Kiss, A., Klaenhammer, T. R., Kobayashi, I., Kong, H., Kruger, D. H., Lacks, S., Marinus, M. G., Miyahara, M., Morgan, R. D., Murray, N. E., Nagaraja, V., Piekarowicz, A., Pingoud, A., Raleigh, E., Rao, D. N., Reich, N., Repin, V. E., Selker, E. U., Shaw, P. C., Stein, D. C., Stoddard, B. L., Szybalski, W., Trautner, T. A., Van Etten, J. L., Vitor, J. M., Wilson, G. G., and Xu, S. Y. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases, and their genes, Nucleic Acids Res., 31, 1805–1812.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Waldron, D. E., and Lindsay, J. A. (2006) Sau1: a novel lin-eage-specific Type I restriction–modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages, J. Bacteriol., 188, 5578–5585.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sitaraman, R., and Dybvig, K. (1997) The hsd loci of Mycoplasma pulmonis: organization, rearrangements, and expression of genes, Mol. Microbiol., 26, 109–120.

    Article  CAS  PubMed  Google Scholar 

  7. Dybvig, K., Sitaraman, R., and French, C. T. (1998) A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrange-ments, Proc. Natl. Acad. Sci. US., 95, 13923–13928.

    Article  CAS  Google Scholar 

  8. Mruk, I., Rajesh, P., and Blumenthal, R. M. (2007) Regulatory circuit based on autogenous activation-repres-sion: roles of C-boxes and spacer sequences in control of the PvuII restriction–modification system, Nucleic Acids Res., 35, 6935–6952.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pingoud, A., Wilson, G. G., and Wende, W. (2014) Type II restriction endonucleases–a historical perspective and more, Nucleic Acids Res., 42, 7489–7527.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Dryden, D. T., Murray, N. E., and Rao, D. N. (2001) Nucleoside triphosphate-dependent restriction enzymes, Nucleic Acids Res., 29, 3728–3741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Mucke, M., Reich, S., Moncke-Buchner, E., Reuter, M., and Kruger, D. H. (2001) DNA cleavage by Type III restriction–modification enzyme EcoP15I is independent of spacer distance between two head to head oriented recognition sites, J. Mol. Biol., 312, 687–698.

    Article  CAS  PubMed  Google Scholar 

  12. Janscak, P., Sandmeier, U., Szczelkun, M. D., and Bickle, T. A. (2001) Subunit assembly and mode of DNA cleavage of the Type III restriction endonucleases EcoP1I and EcoP15I, J. Mol. Biol., 306, 417–431.

    Article  CAS  PubMed  Google Scholar 

  13. Butterer, A., Pernstich, C., Smith, R. M., Sobott, F., Szczelkun, M. D., and Toth, J. (2014) Type III restriction endonucleases are heterotrimeric: comprising one helicase-nuclease subunit and a dimeric methyltransferase that binds only one specific DNA, Nucleic Acids Res., 42, 5139–5150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wyszomirski, K. H., Curth, U., Alves, J., Mackeldanz, P., Moncke-Buchner, E., Schutkowski, M., Kruger, D. H., and Reuter, M. (2012) Type III restriction endonuclease EcoP15I is a heterotrimeric complex containing one Res subunit with several DNA-binding regions and ATPase activity, Nucleic Acids Res., 40, 3610–3622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Loenen, W. A., and Raleigh, E. A. (2014) The other face of restriction: modification-dependent enzymes, Nucleic Acids Res., 42, 56–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Croucher, N. J., Coupland, P. G., Stevenson, A. E., Callendrello, A., Bentley, S. D., and Hanage, W. P. (2014) Diversification of bacterial genome content through distinct mechanisms over different timescales, Nat. Commun., 5, 5471.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Oliveira, P. H., Touchon, M., and Rocha, E. P. (2014) The interplay of restriction–modification systems with mobile genetic elements and their prokaryotic hosts, Nucleic Acids Res., 42, 10618–10631.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kobayashi, I. (2001) Behavior of restriction–modification systems as selfish mobile elements and their impact on genome evolution, Nucleic Acids Res., 29, 3742–3756.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Furuta, Y., Abe, K., and Kobayashi, I. (2010) Genome comparison and context analysis reveals putative mobile forms of restriction–modification systems and related rearrangements, Nucleic Acids Res., 38, 2428–2443.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Raleigh, E. A. (1992) Organization and function of the mcrBC genes of Escherichia coli K-12, Mol. Microbiol., 6, 1079–1086.

    Article  CAS  PubMed  Google Scholar 

  21. Sibley, M. H., and Raleigh, E. A. (2004) Cassette-like vari-ation of restriction enzyme genes in Escherichia coli C and relatives, Nucleic Acids Res., 32, 522–534.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lindsay, J. A. (2010) Genomic variation and evolution of Staphylococcus aureus, Int. J. Med. Microbiol., 300, 98–103.

    Article  CAS  PubMed  Google Scholar 

  23. Corvaglia, A. R., Francois, P., Hernandez, D., Perron, K., Linder, P., and Schrenzel, J. (2010) A type III-like restric-tion endonuclease functions as a major barrier to horizon-tal gene transfer in clinical Staphylococcus aureus strains, Proc. Natl. Acad. Sci. US., 107, 11954–11958.

    Article  CAS  Google Scholar 

  24. Xu, S. Y., Corvaglia, A. R., Chan, S. H., Zheng, Y., and Linder, P. (2011) A Type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300, Nucleic Acids Res., 39, 5597–5610.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R., Noonan, B., Guild, B. C., deJonge, B. L., Carmel, G., Tummino, P. J., Caruso, A., Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang, Q., Taylor, D. E., Vovis, G. F., and Trust, T. J. (1999) Genomic-sequence compari-son of two unrelated isolates of the human gastric pathogen Helicobacter pylori, Natur., 397, 176–180.

    Article  CAS  Google Scholar 

  26. Makarova, K. S., Wolf, Y. I., Snir, S., and Koonin, E. V. (2011) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems, J. Bacteriol., 193, 6039–6056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Seshasayee, A. S., Singh, P., and Krishna, S. (2012) Context-dependent conservation of DNA methyltrans-ferases in bacteria, Nucleic Acids Res., 40, 7066–7073.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ershova, A. S., Karyagina, A. S., Vasiliev, M. O., Lyashchuk, A. M., Lunin, V. G., Spirin, S. A., and Alexeevski, A. V. (2012) Solitary restriction endonucleases in prokaryotic genomes, Nucleic Acids Res., 40, 10107–10115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Furuta, Y., Namba-Fukuyo, H., Shibata, T. F., Nishiyama, T., Shigenobu, S., Suzuki, Y., Sugano, S., Hasebe, M., and Kobayashi, I. (2014) Methylome diversification through changes in DNA methyltransferase sequence specificity, PLoS Genet., 10, e1004272.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Sanchez-Romero, M. A., Cota, I., and Casadesus, J. (2015) DNA methylation in bacteria: from the methyl group to the methylome, Curr. Opin. Microbiol., 25, 9–16.

    Article  CAS  PubMed  Google Scholar 

  31. Krebes, J., Morgan, R. D., Bunk, B., Sproer, C., Luong, K., Parusel, R., Anton, B. P., Konig, C., Josenhans, C., Overmann, J., Roberts, R. J., Korlach, J., and Suerbaum, S. (2014) The complex methylome of the human gastric pathogen Helicobacter pylori, Nucleic Acids Res., 42, 2415–2432.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Furuta, Y., Kawai, M., Uchiyama, I., and Kobayashi, I. (2011) Domain movement within a gene: a novel evolution-ary mechanism for protein diversification, PLoS One, 6, e18819.

  33. Kumar, N., Mariappan, V., Baddam, R., Lankapalli, A. K., Shaik, S., Goh, K. L., Loke, M. F., Perkins, T., Benghezal, M., Hasnain, S. E., Vadivelu, J., Marshall, B. J., and Ahmed, N. (2015) Comparative genomic analysis of Helicobacter pylori from Malaysia identifies three distinct lineages sugges-tive of differential evolution, Nucleic Acids Res., 43, 324–335.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2015) REBASE–a database for DNA restriction and modification: enzymes, genes, and genomes, Nucleic Acids Res., 43, 298–299.

    Article  Google Scholar 

  35. Naito, T., Kusano, K., and Kobayashi, I. (1995) Selfish behavior of restriction–modification systems, Scienc., 267, 897–899.

    Article  CAS  Google Scholar 

  36. O’Neill, M., Chen, A., and Murray, N. E. (1997) The restriction–modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities, Proc. Natl. Acad. Sci. US., 94, 14596–14601.

    Article  Google Scholar 

  37. Redaschi, N., and Bickle, T. A. (1996) Posttranscriptional regulation of EcoP1I and EcoP15I restriction activity, J. Mol. Biol., 257, 790–803.

    Article  CAS  PubMed  Google Scholar 

  38. Dussoix, D., and Arber, W. (1962) Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage ?, J. Mol. Biol., 5, 37–49.

    Article  CAS  PubMed  Google Scholar 

  39. Arber, W., and Dussoix, D. (1962) Host specificity of DNA produced by Escherichia coli. I. Host controlled modifica-tion of bacteriophage ?, J. Mol. Biol., 5, 18–36.

    Article  CAS  PubMed  Google Scholar 

  40. Arber, W., and Linn, S. (1969) DNA modification and restriction, Annu. Rev. Biochem., 38, 467–500.

    Article  CAS  PubMed  Google Scholar 

  41. Bickle, T. A., and Kruger, D. H. (1993) Biology of DNA restriction, Microbiol. Rev., 57, 434–450.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Samson, J. E., Magadan, A. H., Sabri, M., and Moineau, S. (2013) Revenge of the phages: defeating bacterial defens-es, Nat. Rev. Microbiol., 11, 675–687.

    Article  CAS  PubMed  Google Scholar 

  43. Tock, M. R., and Dryden, D. T. (2005) The biology of restriction and anti-restriction, Curr. Opin. Microbiol., 8, 466–472.

    Article  CAS  PubMed  Google Scholar 

  44. Loenen, W. A., Dryden, D. T., Raleigh, E. A., and Wilson, G. G. (2014) Type I restriction enzymes and their relatives, Nucleic Acids Res., 42, 20–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Korona, R., and Levin, B. R. (1993) Phage-mediated selection and the evolution and maintenance of restric-tion–modification, Evolutio., 47, 556–575.

    Article  Google Scholar 

  46. Buckling, A., and Brockhurst, M. (2012) Bacteria–virus coevolution, Adv. Exp. Med. Biol., 751, 347–370.

    Article  CAS  PubMed  Google Scholar 

  47. Levin, B. R. (1988) Frequency-dependent selection in bac-terial populations, Phil. Trans. R. Soc., 319, 459–472.

    Article  CAS  Google Scholar 

  48. Muckerman, C. C., Springhorn, S. S., Greenberg, B., and Lacks, S. A. (1982) Transformation of restriction endonu-clease phenotype in Streptococcus pneumoniae, J. Bacteriol., 152, 183–190.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., Peterson, S., Heidelberg, J., DeBoy, R. T., Haft, D. H., Dodson, R. J., Durkin, A. S., Gwinn, M., Kolonay, J. F., Nelson, W. C., Peterson, J. D., Umayam, L. A., White, O., Salzberg, S. L., Lewis, M. R., Radune, D., Holtzapple, E., Khouri, H., Wolf, A. M., Utterback, T. R., Hansen, C. L., McDonald, L. A., Feldblyum, T. V., Angiuoli, S., Dickinson, T., Hickey, E. K., Holt, I. E., Loftus, B. J., Yang, F., Smith, H. O., Venter, J. C., Dougherty, B. A., Morrison, D. A., Hollingshead, S. K., and Fraser, C. M. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneu-moniae, Scienc., 293, 498–506.

    Article  CAS  Google Scholar 

  50. Sneppen, K., Semsey, S., Seshasayee, A. S., and Krishna, S. (2015) Restriction–modification systems as engines of diversity, Front. Microbiol., 6, 528.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Nandi, T., Holden, M. T., Didelot, X., Mehershahi, K., Boddey, J. A., Beacham, I., Peak, I., Harting, J., Baybayan, P., Guo, Y., Wang, S., How, L. C., Sim, B., Essex-Lopresti, A., Sarkar-Tyson, M., Nelson, M., Smither, S., Ong, C., Aw, L. T., Hoon, C. H., Michell, S., Studholme, D. J., Titball, R., Chen, S. L., Parkhill, J., and Tan, P. (2015) Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombina-tion, accessory, and epigenetic profiles, Genome Res., 25, 608.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Croucher, N. J., Finkelstein, J. A., Pelton, S. I., Mitchell, P. K., Lee, G. M., Parkhill, J., Bentley, S. D., Hanage, W. P., and Lipsitch, M. (2013) Population genomics of post-vaccine changes in pneumococcal epidemiology, Nat. Genet., 45, 656–663.

    Article  CAS  PubMed  Google Scholar 

  53. Manso, A. S., Chai, M. H., Atack, J. M., Furi, L., De Ste Croix, M., Haigh, R., Trappetti, C., Ogunniyi, A. D., Shewell, L. K., Boitano, M., Clark, T. A., Korlach, J., Blades, M., Mirkes, E., Gorban, A. N., Paton, J. C., Jennings, M. P., and Oggioni, M. R. (2014) A random six-phase switch regulates pneumococcal virulence via global epigenetic changes, Nat. Commun., 5, 5055.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Cerdeno-Tarraga, A. M., Patrick, S., Crossman, L. C., Blakely, G., Abratt, V., Lennard, N., Poxton, I., Duerden, B., Harris, B., Quail, M. A., Barron, A., Clark, L., Corton, C., Doggett, J., Holden, M. T., Larke, N., Line, A., Lord, A., Norbertczak, H., Ormond, D., Price, C., Rabbinowitsch, E., Woodward, J., Barrell, B., and Parkhill, J. (2005) Extensive DNA inversions in the B. fragilis genome control variable gene expression, Scienc., 307, 1463–1465.

    Article  CAS  Google Scholar 

  55. Budroni, S., Siena, E., Dunning Hotopp, J. C., Seib, K. L., Serruto, D., Nofroni, C., Comanducci, M., Riley, D. R., Daugherty, S. C., Angiuoli, S. V., Covacci, A., Pizza, M., Rappuoli, R., Moxon, E. R., Tettelin, H., and Medini, D. (2011) Neisseria meningitidis is structured in clades associ-ated with restriction–modification systems that modulate homologous recombination, Proc. Natl. Acad. Sci. US., 108, 4494–4499.

    Article  CAS  Google Scholar 

  56. Heuer, H., and Smalla, K. (2007) Horizontal gene transfer between bacteria, Environ. Biosafety Res., 6, 3–13.

    Article  CAS  PubMed  Google Scholar 

  57. Johnston, C., Martin, B., Fichant, G., Polard, P., and Claverys, J. P. (2014) Bacterial transformation: distribu-tion, shared mechanisms, and divergent control, Nat. Rev. Microbiol., 12, 181–196.

    Article  CAS  PubMed  Google Scholar 

  58. Roer, L., Aarestrup, F. M., and Hasman, H. (2015) The EcoKI type I restriction–modification system in Escherichia coli affects but is not an absolute barrier for conjugation, J. Bacteriol., 197, 337–342.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Srikhanta, Y. N., Fox, K. L., and Jennings, M. P. (2010) The phasevarion: phase variation of Type III DNA methyl-transferases controls coordinated switching in multiple genes, Nat. Rev. Microbiol., 8, 196–206.

    Article  CAS  PubMed  Google Scholar 

  60. Casadesus, J., and Low, D. (2006) Epigenetic gene regulation in the bacterial world, Microbiol. Mol. Biol. Rev., 70, 830–856.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Casadesus, J., and Low, D. A. (2013) Programmed hetero-geneity: epigenetic mechanisms in bacteria, J. Biol. Chem., 288, 13929–13935.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jeltsch, A. (2003) Maintenance of species identity and con-trolling speciation of bacteria: a new function for restric-tion/modification systems? Gen., 317, 13–16.

    Article  CAS  Google Scholar 

  63. Marinus, M. G., and Casadesus, J. (2009) Roles of DNA adenine methylation in host-pathogen interactions: mis-match repair, transcriptional regulation, and more, FEMS Microbiol. Rev., 33, 488–503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Wion, D., and Casadesus, J. (2006) N6-methyl-adenine: an epigenetic signal for DNA–protein interactions, Nat. Rev. Microbiol., 4, 183–192.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Low, D. A., Weyand, N. J., and Mahan, M. J. (2001) Roles of DNA adenine methylation in regulating bacterial gene expression and virulence, Infect. Immun., 69, 7197–7204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Collier, J. (2009) Epigenetic regulation of the bacterial cell cycle, Curr. Opin. Microbiol., 12, 722–729.

    Article  CAS  PubMed  Google Scholar 

  67. Collier, J., Murray, S. R., and Shapiro, L. (2006) DnaA couples DNA replication and the expression of two cell cycle master regulators, EMBO J., 25, 346–356.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Gonzalez, D., Kozdon, J. B., McAdams, H. H., Shapiro, L., and Collier, J. (2014) The functions of DNA methyla-tion by CcrM in Caulobacter crescentus: a global approach, Nucleic Acids Res., 42, 3720–3735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Reisenauer, A., Kahng, L. S., McCollum, S., and Shapiro, L. (1999) Bacterial DNA methylation: a cell cycle regula-tor? J. Bacteriol., 181, 5135–5139.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Boye, E., Lobner-Olesen, A., and Skarstad, K. (2000) Limiting DNA replication to once and only once, Eur. Mol. Biol. Org. Rep., 1, 479–483.

    CAS  Google Scholar 

  71. Calmann, M. A., and Marinus, M. G. (2004) MutS inhibits RecA-mediated strand exchange with platinated DNA sub-strates, Proc. Natl. Acad. Sci. US., 101, 14174–14179.

    Article  CAS  Google Scholar 

  72. Han, J. S., Kang, S., Lee, H., Kim, H. K., and Hwang, D. S. (2003) Sequential binding of SeqA to paired hemi-methylated GATC sequences mediates formation of higher order complexes, J. Biol. Chem., 278, 34983–34989.

    Article  CAS  PubMed  Google Scholar 

  73. Lobner-Olesen, A., Skovgaard, O., and Marinus, M. G. (2005) Dam methylation: coordinating cellular processes, Curr. Opin. Microbiol., 8, 154–160.

    Article  CAS  PubMed  Google Scholar 

  74. Oshima, T., Wada, C., Kawagoe, Y., Ara, T., Maeda, M., Masuda, Y., Hiraga, S., and Mori, H. (2002) Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli, Mol. Microbiol., 45, 673–695.

    Article  CAS  PubMed  Google Scholar 

  75. Lobner-Olesen, A., Marinus, M. G., and Hansen, F. G. (2003) Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis, Proc. Natl. Acad. Sci. US., 100, 4672–4677.

    Article  CAS  Google Scholar 

  76. Marinus, M. G., and Lobner-Olesen, A. (2014) DNA Methylation, EcoSal Plus, doi: 10.1128/ecosalplus.ESP-0003-2013.

    Google Scholar 

  77. Kaack, M. B., Martin, L. N., Svenson, S. B., Baskin, G., Steele, R. H., and Roberts, J. A. (1993) Protective anti-idiotype antibodies in the primate model of pyelonephritis, Infect. Immun., 61, 2289–2295.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Hernday, A., Braaten, B., and Low, D. (2004) The intricate workings of a bacterial epigenetic switch, Adv. Exp. Med. Biol., 547, 83–89.

    Article  CAS  PubMed  Google Scholar 

  79. Watson, M. E., Jr., Jarisch, J., and Smith, A. L. (2004) Inactivation of deoxyadenosine methyltransferase (dam) attenuates Haemophilus influenzae virulence, Mol. Microbiol., 53, 651–664.

    Article  CAS  PubMed  Google Scholar 

  80. Webster, L. T., and Clow, A. D. (1933) Intranasal virulence of pneumococci for mice, J. Exp. Med., 58, 465–483.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Avery, O. T., and Dubos, R. (1931) The protective action of a specific enzyme against Type III pneumococcus infection in mice, J. Exp. Med., 54, 73–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. De Bolle, X., Bayliss, C. D., Field, D., van de Ven, T., Saunders, N. J., Hood, D. W., and Moxon, E. R. (2000) The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to Type III DNA methyltransferases, Mol. Microbiol., 35, 211–222.

    Article  PubMed  Google Scholar 

  83. Srikhanta, Y. N., Maguire, T. L., Stacey, K. J., Grimmond, S. M., and Jennings, M. P. (2005) The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes, Proc. Natl. Acad. Sci. US., 102, 5547–5551.

    Article  CAS  Google Scholar 

  84. Srikhanta, Y. N., Dowideit, S. J., Edwards, J. L., Falsetta, M. L., Wu, H. J., Harrison, O. B., Fox, K. L., Seib, K. L., Maguire, T. L., Wang, A. H., Maiden, M. C., Grimmond, S. M., Apicella, M. A., and Jennings, M. P. (2009) Phasevarions mediate random switching of gene expression in pathogenic Neisseria, PLoS Pathog., 5, e1000400.

  85. Gauntlett, J. C., Nilsson, H. O., Fulurija, A., Marshall, B. J., and Benghezal, M. (2014) Phase-variable restriction/modification systems are required for Helicobacter pylori colonization, Gut Pathog., 6, 35.

    PubMed Central  PubMed  Google Scholar 

  86. Burrough, E. R., Sahin, O., Plummer, P. J., Zhang, Q., and Yaeger, M. J. (2009) Pathogenicity of an emergent, ovine abortifacient Campylobacter jejuni clone orally inoculated into pregnant guinea pigs, Am. J. Vet. Res., 70, 1269–1276.

    Article  PubMed  Google Scholar 

  87. Wu, Z., Sahin, O., Shen, Z., Liu, P., Miller, W. G., and Zhang, Q. (2013) Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni, Genome Biol. Evol., 5, 2217–2230.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Mou, K. T., Muppirala, U. K., Severin, A. J., Clark, T. A., Boitano, M., and Plummer, P. J. (2015) A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data, Front. Microbiol., 5, 782.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Weyler, L., Engelbrecht, M., Mata Forsberg, M., Brehwens, K., Vare, D., Vielfort, K., Wojcik, A., and Aro, H. (2014) Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and dis-tort mitosis in epithelial cells during infection, PLoS One, 9, e114208.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Agarkova, I. V., Dunigan, D. D., and Van Etten, J. L. (2006) Virion-associated restriction endonucleases of chloroviruses, J. Virol., 80, 8114–8123.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Handa, N., and Kobayashi, I. (1999) Post-segregational killing by restriction–modification gene complexes: obser-vations of individual cell deaths, Biochimi., 81, 931–938.

    Article  CAS  Google Scholar 

  92. Handa, N., Nakayama, Y., Sadykov, M., and Kobayashi, I. (2001) Experimental genome evolution: large-scale genome rearrangements associated with resistance to replacement of a chromosomal restriction–modification gene complex, Mol. Microbiol., 40, 932–940.

    Article  CAS  PubMed  Google Scholar 

  93. Sadykov, M., Asami, Y., Niki, H., Handa, N., Itaya, M., Tanokura, M., and Kobayashi, I. (2003) Multiplication of a restriction–modification gene complex, Mol. Microbiol., 48, 417–427.

    Article  CAS  PubMed  Google Scholar 

  94. Szekeres, S., Dauti, M., Wilde, C., Mazel, D., and Rowe-Magnus, D. A. (2007) Chromosomal toxin–antitoxin loci can diminish large-scale genome reductions in the absence of selection, Mol. Microbiol., 63, 1588–1605.

    Article  CAS  PubMed  Google Scholar 

  95. Asakura, Y., Kojima, H., and Kobayashi, I. (2011) Evolutionary genome engineering using a restriction-mod-ification system, Nucleic Acids Res., 39, 9034–9046.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Rocha, E. P. (2004) Order and disorder in bacterial genomes, Curr. Opin. Microbiol., 7, 519–527.

    Article  CAS  PubMed  Google Scholar 

  97. Karlin, S., Burge, C., and Campbell, A. M. (1992) Statistical analyses of counts and distributions of restric-tion sites in DNA sequences, Nucleic Acids Res., 20, 1363–1370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Karlin, S., and Cardon, L. R. (1994) Computational DNA sequence analysis, Annu. Rev. Microbiol., 48, 619–654.

    Article  CAS  PubMed  Google Scholar 

  99. Karlin, S., Mrazek, J., and Campbell, A. M. (1997) Compositional biases of bacterial genomes and evolution-ary implications, J. Bacteriol., 179, 3899–3913.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Gelfand, M. S., and Koonin, E. V. (1997) Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes, Nucleic Acids Res., 25, 2430–2439.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Rocha, E. P., Danchin, A., and Viari, A. (2001) Evolutionary role of restriction/modification systems as revealed by comparative genome analysis, Genome Res., 11, 946–958.

    Article  CAS  PubMed  Google Scholar 

  102. Fuglsang, A. (2003) Distribution of potential Type II restriction sites (palindromes) in prokaryotes, Biochem. Biophys. Res. Commun., 310, 280–285.

    Article  CAS  PubMed  Google Scholar 

  103. Lamprea-Burgunder, E., Ludin, P., and Maser, P. (2011) Species-specific typing of DNA based on palindrome fre-quency patterns, DNA Res., 18, 117–124.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Fukuda, E., Kaminska, K. H., Bujnicki, J. M., and Kobayashi, I. (2008) Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyri-bonucleases, Genome Biol., 9, 163.

    Article  CAS  Google Scholar 

  105. Kunz, A., Mackeldanz, P., Mucke, M., Meisel, A., Reuter, M., Schroeder, C., and Kruger, D. H. (1998) Mutual acti-vation of two restriction endonucleases: interaction of EcoP1 and EcoP15, Biol. Chem., 379, 617–620.

    CAS  PubMed  Google Scholar 

  106. Belogurov, A. A., Efimova, E. P., Delver, E. P., and Zavilgelskii, G. B. (1987) Weakening of Type I restriction in E. coli: the effect of dam mutation, Mol. Gen. Mikrobiol. Virusol., 9, 10–16.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Alexeevski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershova, A.S., Rusinov, I.S., Spirin, S.A. et al. Role of restriction-modification systems in prokaryotic evolution and ecology. Biochemistry Moscow 80, 1373–1386 (2015). https://doi.org/10.1134/S0006297915100193

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915100193

Keywords

Navigation