Skip to main content
Log in

Mutations enhancing selectivity of antitumor cytokine TRAIL to DR5 receptor increase its cytotoxicity against tumor cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tumor necrosis factor superfamily cytokine TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) induces apoptosis in tumor cells by binding to death receptors DR4 and DR5 without affecting normal cells. However, the therapeutic use of TRAIL is limited, because many tumor cells are resistant to it. The resistance is partially related to interaction of TRAIL with the decoy receptors DcR1 and DcR2, which do not trigger the apoptotic signal and inhibit signaling of death receptors. Previously, we designed a unique DR5-specific TRAIL mutant variant DR5-B, which binds to DR5 receptor as effectively as the original cytokine, but has practically no interaction with DR4 and DcR1 receptors, and its affinity for DcR2 is reduced 400-fold. In the present work, the cytotoxity of TRAIL and DR5-B was analyzed on 12 different tumor cell lines and two types of normal cells. In nine of 12 tumor cell lines, DR5-B killed 1.5–5.0 times more tumor cells than TRAIL, and it did not exhibit toxicity towards normal cells. Chemotherapeutic drugs such as doxorubicin, paclitaxel, and bortezomib augmented the effect of both TRAIL variants, and the enhancing effect was more pronounced for DR5-B. Half-maximal effective concentrations (EC50) for DR5-B in combination with chemotherapeutic agents were 1.5–10.0 times lower than for wild-type TRAIL. Thus, DR5-B is a promising candidate both for monotherapy and in combination with chemotherapy for treatment of TRAIL-resistant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiley, S. R., Schooley, K., Smolak, P. J., Din, W. S., Huang, C. P., Nicholl, J. K., Sutherland, G. R., Smith, T. D., Rauch, C., and Smith, C. A. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis, Immunity, 3, 673–682.

    Article  CAS  PubMed  Google Scholar 

  2. Pitti, R. M., Marsters, S. A., Ruppert, S., Donahue, C. J., Moore, A., and Ashkenazi, A. (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family, J. Biol. Chem., 271, 12687–12690.

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., Blackie, C., Chang, L., Mc Murtrey, A. E., Hebert, A., DeForge, L., Koumenis, I. L., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z., and Schwall, R. H. (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand, J. Clin. Invest., 104, 155–162.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wajant, H., Gerspach, J., and Pfizenmaier, K. (2013) Engineering death receptor ligands for cancer therapy, Cancer Lett., 332, 163–174.

    Article  CAS  PubMed  Google Scholar 

  5. Lemke, J., von Karstedt, S., Zinngrebe, J., and Walczak, H. (2014) Getting TRAIL back on track for cancer therapy, Cell Death Differ., 21, 1350–1364.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Wajant, H., Gerspach, J., and Pfizenmaier, K. (2005) Tumor therapeutics by design: targeting and activation of death receptors, Cytokine Growth Factor Rev., 16, 55–76.

    Article  CAS  PubMed  Google Scholar 

  7. Dimberg, L. Y., Anderson, C. K., Camidge, R., Behbakht, K., Thorburn, A., and Ford, H. L. (2013) On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics, Oncogene, 32, 1341–1350.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gonzalvez, F., and Ashkenazi, A. (2010) New insights into apoptosis signaling by Apo2L/TRAIL, Oncogene, 29, 4752–4765.

    Article  CAS  PubMed  Google Scholar 

  9. Merino, D., Lalaoui, N., Morizot, A., Schneider, P., Solary, E., and Micheau, O. (2006) Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2, Mol. Cell Biol., 26, 7046–7055.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hymowitz, S. G., O’ Connell, M. P., Ultsch, M. H., Hurst, A., Totpal, K., Ashkenazi, A., de Vos, A. M., and Kelley, R. F. (2000) A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL, Biochemistry, 39, 633–640.

    Article  CAS  PubMed  Google Scholar 

  11. Gasparian, M. E., Chernyak, B. V., Dolgikh, D. A., Yagolovich, A. V., Popova, E. N., Sycheva, A. M., Moshkovskii, S. A., and Kirpichnikov, M. P. (2009) Generation of new TRAIL mutants DR5-A and DR5-B with improved selectivity to death receptor 5, Apoptosis, 14, 778–787.

    Article  CAS  PubMed  Google Scholar 

  12. Georgakis, G. V., Li, Y., Humphreys, R., Andreeff, M., O’ Brien, S., Younes, M., Carbone, A., Albert, V., and Younes, A. (2005) Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-R2 in primary and cultured lymphoma cells: induction of apoptosis and enhancement of doxorubicinand bortezomib-induced cell death, Br. J. Haematol., 130, 501–510.

    Article  CAS  PubMed  Google Scholar 

  13. Griffith, T. S., Rauch, C. T., Smolak, P. J., Waugh, J. Y., Boiani, N., Lynch, D. H., Smith, C. A., Goodwin, R. G., and Kubin, M. Z. (1999) Functional analysis of TRAIL receptors using monoclonal antibodies, J. Immunol., 162, 2597–2605.

    CAS  PubMed  Google Scholar 

  14. Elrod, H. A., and Sun, S. Y. (2008) Modulation of death receptors by cancer therapeutic agents, Cancer Biol. Ther., 7, 163–173.

    Article  CAS  PubMed  Google Scholar 

  15. Mahalingam, D., Szegezdi, E., Keane, M., de Jong, S., and Samali, A. (2009) TRAIL receptor signaling and modulation: are we on the right TRAIL? Cancer Treat. Rev., 35, 280–288.

    Article  CAS  PubMed  Google Scholar 

  16. Li, F., and Ravetch, J. V. (2012) Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcγ receptor engagement, Proc. Natl. Acad. Sci. USA, 109, 10966–10971.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kelley, R. F., Totpal, K., Lindstrom, S. H., Mathieu, M., Billeci, K., Deforge, L., Pai, R., Hymowitz, S. G., and Ashkenazi, A. (2005) Receptor-selective mutants of Apo2L/TRAIL reveal a greater contribution of DR5 than DR4 to apoptosis signaling, J. Biol. Chem., 28, 2205–2212.

    Google Scholar 

  18. Van der Sloot, A. M., Tur, V., Szegezdi, T. E., Mullally, M. M., Cool, R. H., Samali, A., Serrano, L., and Quax, W. J. (2006) Designed tumor necrosis factor-related apoptosisinducing ligand variants initiating apoptosis exclusively via the DR5 receptor, Proc. Natl. Acad. Sci. USA, 10, 8634–8639.

    Article  Google Scholar 

  19. Gasparian, M. E., Ostapchenko, V. G., Schulga, A. A., Dolgikh, D. A., and Kirpichnikov, M. P. (2003) Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli, Protein Express. Purif., 31, 133–139.

    Article  CAS  Google Scholar 

  20. Gasparian, M. E., Bychkov, M. L., Dolgikh, D. A., and Kirpichnikov, M. P. (2011) Strategy for improvement of enteropeptidase efficiency in tag removal processes, Protein Express. Purif., 79, 191–196.

    Article  CAS  Google Scholar 

  21. Yagita, H., Takeda, K., Hayakawa, Y., Smyth, M. J., and Okumura, K. (2004) TRAIL and its receptors as targets for cancer therapy, Cancer Sci., 95, 777–783.

    Article  CAS  PubMed  Google Scholar 

  22. Ashkenazi, A., and Herbst, R. S. (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists, J. Clin. Invest., 118, 1979–1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Prasad, S., Kim, J. H., Gupta, S. C., and Aggarwal, B. B. (2014) Targeting death receptors for TRAIL by agents designed by Mother Nature, Trends Pharmacol. Sci., 35, 520–536.

    Article  CAS  PubMed  Google Scholar 

  24. Van Roosmalen, I. A., Quax, W. J., and Kruyt, F. A. (2014) Two death-inducing human TRAIL receptors to target in cancer: similar or distinct regulation and function? Biochem. Pharmacol., 91, 447–456.

    Article  PubMed  Google Scholar 

  25. Lu, M., Lawrence, D. A., Marsters, S., Acosta-Alvear, D., Kimmig, P., Mendez, A. S., Paton, A. W., Paton, J. C., Walter, P., and Ashkenazi, A. (2014) Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis, Science, 345, 98–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Holland, P. M. (2014) Death receptor agonist therapies for cancer, which is the right TRAIL? Cytokine Growth Factor Rev., 25, 185–193.

    Article  CAS  PubMed  Google Scholar 

  27. MacFarlane, M., Inoue, S., Kohlhaas, S. L., Majid, A., Harper, N., Kennedy, B. D., Dyer, M. J., and Cohen, G. M. (2005) Chronic lymphocytic leukemic cells exhibit apoptotic signaling via TRAIL-R1, Cell Death Differ., 12, 773–782.

    Article  CAS  PubMed  Google Scholar 

  28. Kabore, A. F., Sun, J., Hu, X., Mc Crea, K., Johnston, J. B., and Gibson, S. B. (2006) The TRAIL apoptotic pathway mediates proteasome inhibitor induced apoptosis in primary chronic lymphocytic leukemia cells, Apoptosis, 11, 1175–1193.

    Article  CAS  PubMed  Google Scholar 

  29. Bychkov, M. L., Gasparian, M. E., Dolgikh, D. A., and Kirpichnikov, M. P. (2014) Combination of TRAIL with bortezomib shifted apoptotic signaling from DR4 to DR5 death receptor by selective internalization and degradation of DR4, PLoS One, 19, e109756.

  30. Herbst, R. S., Eckhardt, S. G., Kurzrock, R., Ebbinghaus, S., O’Dwyer, P. J., Gordon, M. S., Novotny, W., Goldwasser, M. A., Tohnya, T. M., Lum, B. L., Ashkenazi, A., Jubb, A. M., and Mendelson, D. S. (2010) Phase I doseescalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer, J. Clin. Oncol., 28, 2839–2846.

    Article  CAS  PubMed  Google Scholar 

  31. Bosman, M. C., Reis, C. R., Schuringa, J. J., Vellenga, E., and Quax, W. J. (2014) Decreased affinity of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) D269H/E195R to osteoprotegerin (OPG) overcomes TRAIL resistance mediated by the bone microenvironment, J. Biol. Chem., 289, 1071–1078.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Gasparian.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 8, pp. 1298–1311.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparian, M.E., Bychkov, M.L., Yagolovich, A.V. et al. Mutations enhancing selectivity of antitumor cytokine TRAIL to DR5 receptor increase its cytotoxicity against tumor cells. Biochemistry Moscow 80, 1080–1091 (2015). https://doi.org/10.1134/S0006297915080143

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915080143

Key words

Navigation