Skip to main content
Log in

Hybrid structures of polycationic aluminum phthalocyanines and quantum dots

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Semiconductor nanocrystals (CdSe/ZnS quantum dots, QDs) were used as inorganic focusing antenna, allowing for the enhancement of fluorescence and photosensitizing activity of polycationic aluminum phthalocyanines (PCs). It was found that QDs form stable complexes with PCs in aqueous solutions due to electrostatic interactions. In such hybrid complexes, we observed highly efficient nonradiative energy transfer from QD to PC, leading to a sharp increase in the effective absorption cross section of PC in the absorption bands of the CdSe/ZnS quantum dots. When hybrid complexes are excited within these bands, the intensity of PC fluorescence and the rate of photosensitized singlet oxygen generation increases significantly (up to 500 and 350%, correspondingly) compared to free PC at the same concentration. The observed effect is of interest for modeling primary stages of photosynthesis and increasing photosensitizing activity of dyes used in photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPBF:

1,3-diphenylisobenzofuran

PCY :

aluminum phthalocyanine, where Y is degree of substitute incorporation

QDX :

quantum dots with emission maximum X

ROS:

reactive oxygen species

References

  1. Halliwell, B. (2005) Free Radicals and Other Reactive Species in Disease, eLS, John Wiley & Sons, Ltd., Singapore.

    Google Scholar 

  2. He, J. A., Hu, Y. Z., and Jiang, L. J. (1997) Photodynamic action of phycobiliproteins: in situ generation of reactive oxygen species, Biochim. Biophys. Acta, 1320, 165–174.

    Article  CAS  Google Scholar 

  3. Sedoud, A., Lopez-Igual, R., ur Rehman, A., Wilson, A., Perreau, F., Boulay, C., and Kirilovsky, D. (2014) The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher, Plant Cell, 26, 1781–1791.

    Article  CAS  PubMed  Google Scholar 

  4. Moser, F. H., and Thomas, A. L. (1983) The Phthalocyanines, CRC Press, Boca Raton, FL.

    Google Scholar 

  5. Torre, G., Vazquez, P., Agullo-Lopez, F., and Torres, T. (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds, Chem. Rev., 104, 3723–3750.

    Article  PubMed  Google Scholar 

  6. Dogo, S., Germain, J. P., Maleysson, C., and Pauly, A. (1992) Interaction of NO2 with copper phthalocyanine thin films II: application to gas sensing, Thin Solid Films, 219, 251.

    Article  CAS  Google Scholar 

  7. Kaliya, O. L., Lukyanets, E. A., and Vorozhtsov, G. N. (1999) Catalysis and photocatalysis by phthalocyanines for technology, ecology and medicine, J. Porphyrins Phthalocyanines, 3, 592.

    Article  CAS  Google Scholar 

  8. Wohrle, D., Suvorova, O., Gerdes, R., Bartels, O., Lapok, L., Baziakina, N., Makarov, S., and Slodek, A. (2004) Efficient oxidations and photooxidations with molecular oxygen using metal phthalocyanines as catalysts and photocatalysts, J. Porphyrins Phthalocyanines, 8, 1020.

    Article  Google Scholar 

  9. Carraro, M., Sartorel, A., Toma, F., Puntoriero, F., Scandola, F., Campagna, S., Prato, M., and Bonchio, M. (2011) Artificial photosynthesis challenges: water oxidation at nanostructured interfaces, Top. Curr. Chem., 303, 121–150.

    Article  CAS  PubMed  Google Scholar 

  10. Walter, M. G., Rudine, A. B., and Wamser, C. C. (2010) Porphyrins and phthalocyanines in solar photovoltaic cells, J. Porphyrins Phthalocyanines, 14, 759–792.

    Article  CAS  Google Scholar 

  11. McConnell, I., Li, G., and Brudvig, G. W. (2010) Energy conversion in natural and artificial photosynthesis, Chem. Biol., 17, 434–447.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sekkat, N., van den Bergh, H., Nyokong, T., and Lange, N. (2011) Like a bolt from the blue: phthalocyanines in biomedical optics, Molecules, 17, 98–144.

    Article  PubMed  Google Scholar 

  13. Cook, M. J., Chambrier, I., Cracknell, S. J., Mayes, D. A., and Russell, D. A. (1995) Octaalkyl zinc phthalocyanines: potential photosensitizers for use in the photodynamic therapy of cancer, Photochem. Photobiol., 62, 542–545.

    Article  CAS  PubMed  Google Scholar 

  14. Ochsner, M. (1997) Photophysical and photobiological processes in the photodynamic therapy of tumors, J. Photochem. Photobiol. B, 39, 1–18.

    Article  CAS  PubMed  Google Scholar 

  15. Hamblin, M., and Hasan, T. (2004) Photodynamic therapy: a new antimicrobial approach to infectious diseases, Photochem. Photobiol. Sci., 3, 436–450.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Strakhovskaya, M. G., Antonenko, U. N., Pashkovskaya, A. A., Kotova, E. A., Kireev, V., Zhukhovizky, V. G., Kuznetzova, N. A., Uzhakova, O. A., Negrimovsky, V. M., and Rubin, A. B. (2009) Electrostatic binding of substituted phthalocyanines to enterobacteria cells: the role in photodynamic inactivation, Biochemistry (Moscow), 74, 1305–1314.

    Article  CAS  Google Scholar 

  17. Kuznetsova, N. A., Yuzhakova, O. A., Strakhovskaya, M. G., Shumarina, A. O., Kozlov, A. S., Krasnovsky, A. A., and Kaliya, O. L. (2011) New heterogeneous photosensitizers with phthalocyanine molecules covalently linked to aminopropyl silica gel, J. Porphyrins Phthalocyanines, 15, 718–726.

    Article  CAS  Google Scholar 

  18. Makarov, D. A., Kuznetsova, N. A., Yuzhakova, O. A., Savvina, L. P., Kaliya, O. L., Lukyanets, E. A., Negrimovskii, V. M., and Strakhovskaya, M. G. (2009) Effects of the degree of substitution on the physicochemical properties and photodynamic activity of zinc and aluminum phthalocyanine polycations, Rus. J. Phys. Chem. A, 83, 1044–1050.

    Article  CAS  Google Scholar 

  19. Sukhanova, A., Baranov, A. V., Klinov, D., Oleinikov, V., Berwick, K., Cohen, J. H. M., Pluot, M., and Nabiev, I. (2006) Self-assembly of charged microclusters of CdSe/ZnS core/shell nanodots and nanorods into hierarchically ordered colloidal arrays, Nanotechnology, 17, 4223–4228.

    Article  CAS  PubMed  Google Scholar 

  20. Bawendi, M. G., Carroll, P. J., Wilson, W. L., and Brus, L. E. (1992) Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states, J. Chem. Phys., 96, 946.

    Article  CAS  Google Scholar 

  21. Bergmann, L., Schafer, C., and Niedrig, H. (2004) Lehrbuch der Experimentalphysik: Optik, Band 3, 9 Auflage, Walter de Gruyter, Berlin.

    Google Scholar 

  22. Leatherdale, C. A., Woo, W.-K., Mikulec, F. V., and Bawendi, M. G. (2002) On the absorption cross section of CdSe nanocrystal quantum dots, J. Phys. Chem. B, 106, 7619–7622.

    Article  CAS  Google Scholar 

  23. Sukhanova, A., Artemyev, M., Sharapov, O., Baranov, A., Jardillier, J. C., and Nabiev, I. (2001) European, Eurasian and USA patents EP1366347, US2004105973, WO02073155.

    Google Scholar 

  24. Oleinikov, V. A., Sukhanova, A. V., and Nabiev, I. R. (2007) Fluorescent semiconductor crystals in biology and medicine, Ros. Nanotekhnol., 2, 160–173.

    Google Scholar 

  25. Medintz, I. L., and Mattoussi, H. (2009) Quantum dot-based resonance energy transfer and its growing application in biology, Phys. Chem. Chem. Phys., 11, 17–45.

    Article  CAS  PubMed  Google Scholar 

  26. Nabiev, I., Rakovich, A., Sukhanova, A., Lukashev, E., Zagidullin, V., Paschenko, V., Rakovich, Y. P., Donegan, J. F., Rubin, A. B., and Govorov, A. O. (2010) Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers, Angewandte Chemie, 49, 7217–7221.

    Article  PubMed  Google Scholar 

  27. Maksimov, E. G., Gostev, T. S., Kuzminov, F. I., Sluchanko, N. N., Stadnichuk, I. N., Paschenko, V. Z., and Rubin, A. B. (2010) Hybrid systems of quantum dots mixed with the photosensitive protein phycoerythrin, Ros. Nanotekhnol., 5, 531–537.

    Google Scholar 

  28. Schmitt, F.-J., Maksimov, E. G., Suedmeyer, H., Jeyasangar, V., Theiss, C., Paschenko, V. Z., Eichler, H. J., and Renger, G. (2010) Time resolved temperature switchable excitation energy transfer processes between CdSe/ZnS nanocrystals and phycobiliprotein antenna from Acaryochloris marina, Photon. Nanostruct. Fundam. Appl., 9, 190–195.

    Article  Google Scholar 

  29. Schmitt, F.-J., Maksimov, E. G., Hatti, P., Weissenborn, J., Jeyasangar, V., Razjivin, A. P., Paschenko, V. Z., Friedrich, T., and Renger, G. (2012) Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Forster resonance energy transfer, Biochim. Biophys. Acta, 1817, 1461–1470.

    Article  CAS  PubMed  Google Scholar 

  30. Maksimov, E. G., Kurashov, V. N., Mamedov, M. D., and Paschenko, V. Z. (2012) Hybrid system based on quantum dots and photosystem 2 core complex, Biochemistry (Moscow), 77, 624–630.

    Article  CAS  Google Scholar 

  31. Borissevitch, I. E., Parra, G. G., Zagidullin, V. E., Lukashev, E. P., Paschenko, V. Z., Knox, P. P., and Rubin, A. B. (2013) Cooperative effects in quenching of CdSe/ZnS-PEGOH quantum dot luminescence by water soluble porphyrins, J. Luminesc., 134, 83–87.

    Article  CAS  Google Scholar 

  32. Idowu, M., Chen, J. Y., and Nyokong, T. (2008) Photo-induced energy transfer between water-soluble CdTe quantum dots and aluminum tetra-sulfonated phthalocyanine, New J. Chem., 32, 290–296.

    Article  CAS  Google Scholar 

  33. Britton, J., Antunes, E., and Nyokong, T. (2009) Fluorescence studies of quantum dots and zinc tetraaminophthalocyanine conjugates, Inorg. Chem. Commun., 12, 828–831.

    Article  CAS  Google Scholar 

  34. Britton, J., Antunes, E., and Nyokong, T. (2010) Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines, J. Photochem. Photobiol. A: Chem., 210, 1–7.

    Article  CAS  Google Scholar 

  35. Narband, N., Mubarak, M., Ready, D., Parkin, I. P., Nair, S. P., Green, M. A., Beeby, A., and Wilson, M. (2008) Quantum dots as enhancers of the efficacy of bacterial lethal photosensitization, Nanotechnology, 19, 445102.

    Article  CAS  PubMed  Google Scholar 

  36. Samia, A. C. S., Dayal, S., and Burda, C. (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy, Photochem. Photobiol., 82, 617–625.

    Article  CAS  PubMed  Google Scholar 

  37. Suchanek, J., Lang, K., Novakova, V., Zimcik, P., Zelingera, Z., and Kubat, P. (2013) Photophysical properties of CdSe quantum dot self-assemblies with zinc phthalocyanines and azaphthalocyanines, Photochem. Photobiol. Sci., 12, 743–750.

    Article  CAS  PubMed  Google Scholar 

  38. Idowu, M., and Nyokong, T. (2010) Spectroscopic behavior of cationic metallophthalocyanines in the presence of anionic quantum dots, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 75, 411–416.

    Article  Google Scholar 

  39. Li, L., Zhao, J. F., Won, N., Jin, H., Kim, S., and Chen, J. Y. (2012) Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer (FRET), Nanoscale Res. Lett., 7, 386.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Tekdas, D. A., Durmus, M., Yanik, H., and Ahsen, V. (2012) Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc), Spectrochim. Acta A: Mol. Biomol. Spectrosc., 93, 313–320.

    Article  CAS  Google Scholar 

  41. Idowu, M., and Nyokong, T. (2009) Interaction of watersoluble CdTe quantum dots with octacarboxy-metallophthalocyanines: a photophysical and photochemical study, J. Luminesc., 129, 356–362.

    Article  CAS  Google Scholar 

  42. Yu, W. W., Qu, L., Guo, W., and Peng, X. (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater., 15, 2854–2860.

    Article  CAS  Google Scholar 

  43. Jasieniak, J., Smith, L., van Embden, J., and Mulvaney, P. (2009) Re-examination of the size-dependent absorption properties of CdSe quantum dots, J. Phys. Chem. C, 113, 19468–19474.

    Article  CAS  Google Scholar 

  44. PML-16-C. 16-Channel Detector Head for Time-Correlated Single Photon Counting. User Handbook (2006) Becker & Hickl GmbH, Berlin; http://www.becker-hickl.de/pdf/pml16c21.pdf.

  45. Schmitt, F. J. (2011) Picobiophotonics for the Investigation of Pigment-Pigment and Pigment-Protein Interactions in Photosynthetic Complexes (thesis), Technische Universitat Berlin.

    Google Scholar 

  46. Nakamura, K., Ishiyama, K., Ikai, H., Kanno, T., Sasaki, K., Niwano, Y., and Kohno, M. (2011) Reevaluation of analytical methods for photogenerated singlet oxygen, J. Clin. Biochem. Nutr., 49, 95.

    Article  Google Scholar 

  47. Lakowicz, J. R. (ed.) (1999) Principles of Fluorescence Spectroscopy, 2nd Edn., Kluwer Academic/Plenum Publishers.

    Google Scholar 

  48. Shiohara, A., Hoshino, A., Hanaki, K., Suzuki, K., and Yamamoto, K. (2004) On the cytotoxicity caused by quantum dots, Microbiol. Immunol., 48, 669–675.

    Article  CAS  PubMed  Google Scholar 

  49. Derfus, A. M., Chan, W. C. W., and Bhatia, S. N. (2004) Probing the cytotoxicity of semiconductor quantum dots, Nano Lett., 4, 11–18.

    Article  CAS  Google Scholar 

  50. Bakalova, R., Ohba, H., Zhelev, Z., Ishikawa, M., and Baba, Y. (2004) Quantum dots as photosensitizers, Nature Biotechnol., 22, 1360–1361.

    Article  CAS  Google Scholar 

  51. Samia, A. C. S., Chen, X., and Burda, C. (2003) Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc., 125, 15736–15737.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Maksimov.

Additional information

Original Russian Text © E. G. Maksimov, D. A. Gvozdev, M. G. Strakhovskaya, V. Z. Paschenko, 2015, published in Biokhimiya, 2015, Vol. 80, No. 3, pp. 389–398.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, E.G., Gvozdev, D.A., Strakhovskaya, M.G. et al. Hybrid structures of polycationic aluminum phthalocyanines and quantum dots. Biochemistry Moscow 80, 323–331 (2015). https://doi.org/10.1134/S0006297915030074

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915030074

Key words

Navigation