Skip to main content
Log in

Structure and functional investigation of ligand binding by a family 35 carbohydrate binding module (CtCBM35) of β-mannanase of family 26 glycoside hydrolase from Clostridium thermocellum

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Functional attributes of recombinant CtCBM35 (family 35 carbohydrate binding module) of β-mannanase of family 26 Glycoside Hydrolase from Clostridium thermocellum were deduced by biochemical and in silico approaches. Ligand-binding analysis of expressed CtCBM35 analyzed by affinity-gel electrophoresis and fluorescence spectroscopy exhibited association constants K a ∼ 1.2·105 and 3.0·105 M−1 with locust bean galactomannan and mannotriose, respectively. However, CtCBM35 showed low ligand-binding affinity with insoluble ivory nut mannan with K a of 5.0·10−5 M−1. Unfolding transition analysis by fluorescence spectroscopy explained the conformational changes of CtCBM35 in the presence of guanidine hydrochloride (5 M) and urea (6.25 M). This explained that CtCBM35 has good conformational stability and requires higher free energy of denaturation to invoke unfolding. The three-dimensional (3-D) model of CtCBM35 from C. thermocellum generated by Modeller9v8 displayed predominance of β-sheets arranged as β-jelly-roll fold. The secondary structure of CtCBM35 by PredictProtein showed the presence of two α-helices (3%), 12 β-sheets (45%), and 15 random coils (52%). Secondary structural element analysis of cloned, expressed, and purified recombinant CtCBM35 by circular dichroism also corroborated the in silico predicted secondary structure. Multiple sequence alignment of CtCBM35 showed conserved residues (Tyr123, Gly124, and Phe125), which are commonly observed in mannan specific CBMs. Docking analysis of CtCBM35 with manno-oligosaccharide displayed the involvement of Tyr26, Gln29, Asn43, Trp66, Tyr68, Leu69, Arg76, and Leu127 residues, making polar contact with the ligand molecules. Ligand docking analysis of CtCBM35 exhibiting higher binding affinity with mannotriose and galactomannan (Man-Gal-Man moiety) substantiated the affinity binding and fluorescence results, displaying similar values of K a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, S., Zheng, X., and Dong, X. (2011) CBM3d, a novel subfamily of family 3 carbohydrate-binding modules identified in Cel48A exoglucanase of Cellulosilyticum ruminicola, J. Bacteriol., 193, 5199–5206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Taylor, E. J., Goyal, A., Guerreiro, C. I. P. D., Prates, J. A., Money, V. A., Ferry, N., Morland, C., Planas, A., Macdonald, J. A., Stick, R. V., Gilbert, H. J., Fontes, C. M., and Davies, G. J. (2005) How family 26 glycoside hydrolases orchestrate catalysis on different polysaccharides: structure and activity of a Clostridium thermocellum lichenase, CtLic26A, J. Biol. Chem., 280, 32761–32767.

    Article  CAS  PubMed  Google Scholar 

  3. Sunna, A. (2010) Modular organization and functional analysis of dissected modular β-mannanase CsMan26 from Caldicellulo siruptor Rt8B.4, Appl. Microbiol. Biotechnol., 86, 189–200.

    Article  CAS  PubMed  Google Scholar 

  4. Bolam, D. N., Xie, H., Pell, G., Hogg, D., Galbraith, G., Henrissat, B., and Gilbert, H. J. (2004) X4 modules represent a new family of carbohydrate-binding modules that display novel properties, J. Biol. Chem., 279, 22953–22963.

    Article  CAS  PubMed  Google Scholar 

  5. Valenzuela, S. V., Diaz, P., and Pastor, F. I. (2012) Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module, Appl. Environ. Microbiol., 78, 3923–3931.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ahmed, S., Saraf, T., and Goyal, A. (2009) Homology modeling of family 39 glycoside hydrolase from Clostridium thermocellum, Curr. Trend. Biotechnol. Pharm., 3, 210–218.

    CAS  Google Scholar 

  7. Tunnicliffe, R. B., Bolam, D. N., Pell, G., Gilbert, H. J., and Williamson, M. P. (2005) Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding, J. Mol. Biol., 347, 287–296.

    Article  CAS  PubMed  Google Scholar 

  8. Johansson, R., Gunnarsson, L. C., Ohlin, M., and Ohlson, S. (2006) Thermostable carbohydrate-binding modules in affinity chromatography, J. Mol. Recognit., 19, 275–281.

    Article  CAS  PubMed  Google Scholar 

  9. Abbott, D. W., and Boraston, A. B. (2012) Quantitative approaches to the analysis of carbohydrate-binding module function, Methods Enzymol., 510, 211–231.

    Article  CAS  PubMed  Google Scholar 

  10. Correia, M. A., Abbott, D. W., Gloster, T. M., Fernandes, V. O., Prates, J. A., Montanier, C., Dumon, C., Williamson, M. P., Tunnicliffe, R. B., Liu, Z., Flint, J. E., Davies, G. J., Henrissat, B., Coutinho, P. M., Fontes, C. M. G. A., and Gilbert, H. J. (2010) Signature active site architectures illuminate the molecular basis for ligand specificity in family 35 carbohydrate binding module, Biochemistry, 49, 6193–6205.

    Article  CAS  PubMed  Google Scholar 

  11. Montanier, C., van Bueren, A. L., Dumon, C., Flint, J. E., Correia, M. A., Prates, J. A., Firbank, S. J., Lewis, R. J., Grondin, G. G., Ghinet, M. G., Gloster, T. M., Herve, C., Knox, J. P., Talbot, B. G., Turkenburg, J. P., Kerovuo, J., Brzezinski, R., Fontes, C M., Davies, G. J., Boraston, A. B., and Gilbert, H. J. (2009) Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function, Proc. Natl. Acad. Sci. USA, 106, 3065–3070.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ghosh, A., Luis, A. S., Bras, J. L. A., Pathaw, N., Chrungoo, N. K., Fontes, C. M. G. A., and Goyal, A. (2013) Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for glucoand galacto-substituted mannans and its calcium induced stability, Plos One, 8, e80415.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kelly, S. M., Jess, T. J., and Price, N. C. (2005) How to study proteins by circular dichroism, Biochim. Biophys. Acta, 1751, 119–139.

    Article  CAS  PubMed  Google Scholar 

  14. Andrade, M. A., Chacon, P., Merelo, J. J., and Moran, F. (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network, Protein Eng., 6, 383–390.

    Article  CAS  PubMed  Google Scholar 

  15. Takeo, K. (1984) Affinity electrophoresis: principles and applications, Electrophoresis, 5, 187–195.

    Article  CAS  Google Scholar 

  16. Bradford, M. M. (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  17. Gilkes, N. R., Eric, J. S., Henrissat, B., Tekant, B., Miller, R. C., Jr., Warren, R. A., and Kilburn, D. G. (1992) The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose, J. Biol. Chem., 267, 6743–6749.

    CAS  PubMed  Google Scholar 

  18. Royer, C. A. (2006) Probing protein folding and conformational transitions with fluorescence, Chem. Rev., 106, 1769–1784.

    Article  CAS  PubMed  Google Scholar 

  19. Belatik, A., Hotchandani, S., Carpentier, R., and TajmirRiahi, H. A. (2012) Locating the binding sites of Pb (II) ion with human and bovine serum albumins, Plos One, 7, 1–9.

    Article  Google Scholar 

  20. Ahmad, F., Yadav, S., and Taneja, S. (1992) Determining stability of proteins from guanidinium chloride transition curves, Biochem. J., 287, 481–485.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Krieger, E., Joo, K., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., and Karplus, K. (2009) Homology modeling in YASARA, Proteins, 77, 114–122.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673–4680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R (2011) Open babel: an open chemical toolbox, J. Chem. Inf. Model, 3, 1–14.

    Google Scholar 

  24. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., and Carlson, A. J. (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem., 19, 1639–1662.

    Article  CAS  Google Scholar 

  25. Mizutani, K., Fernandes, V. O., Karita, S., Luis, A. S., Sakka, M., Kimura, T., Jackson, A., Zhang, X., Fontes, C. M., Gilbert, H. J., and Sakka, K. (2012) Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase, Appl. Environ. Microbiol., 78, 4781–4787.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Montanier, C., van Bueren, A. L., Dumon, C., Flint, J. E., Correia, M. A., Prates, J. A., Firbank, S. J., Lewis, R. J., Grondin, G. G., Ghinet, M. G., Gloster, T. M., Herve, C., Knox, J. P., Talbot, B. G., Turkenburg, J. P., Kerovuo, J., Brzezinski, R., Fontes, C. M., Davies, G. J., Boraston, A. B., and Gilbert, H. J. (2009) Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function, Proc. Natl. Acad. Sci. USA, 106, 3065–3070.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Din, N., Damude, H. G., Gilkes, N. R., Miller, R. C., Jr., Warren, R. A., and Kilburn, D. G. (1994) C1-Cx revisited: intramolecular synergism in a cellulose, Proc. Natl. Acad. Sci. USA, 91, 11383–11387.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Din, N., Gilkes, N. R., Tekant, B., Miller, R. C., Jr., Warren, R. A. J., and Kilburn, D. G. (1991) Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase, Nat. Biotechnol., 9, 1096–1099.

    Article  CAS  Google Scholar 

  29. Mohan, S., Thambi Dorai, D., Srimal, S., Bachhawat, B. K., and Das, M. K. (1983) Fluorescence studies on the interaction of some ligands with carcinoscorpin, the sialic acid specific lectin, from the horseshoe crab, Carcinoscorpius rotundacauda, J. Biosci., 5, 155–162.

    Article  CAS  Google Scholar 

  30. Christova, P., Todorova, K., Timtcheva, I., Nacheva, G., Karshikoff, A., and Nikolov, P. (2003) Fluorescence studies on denaturation and stability of recombinant human interferon-gamma, Z. Naturforsch. C, 58, 288–294.

    CAS  PubMed  Google Scholar 

  31. Pace, N. C., Shirley B. A., and Thomson, J. A. (1989) in Protein Structure: a Particular Approach (Creighton, T. E., ed.) IRL Press, Oxford, pp. 311–329.

  32. Pinheiro, B. A., Proctor, M. R., Martinez-Fleites, C., Prates, J. A. M., Money, V. A., Davies, G. J., Bayer, E. A., Fontesm, C. M., Fierobe, H. P., and Gilbert, H. J. (2008) The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner, J. Biol. Chem., 283, 18422–18430.

    Article  CAS  PubMed  Google Scholar 

  33. Colovos, C., and Yeates, T. O. (1993) Verification of protein structures: patterns of nonbonded atomic interactions, Prot. Sci., 2, 1511–1519.

    Article  CAS  Google Scholar 

  34. Carvalho, A. L., Goyal, A., Prates, J. A. M., Bolam, D. N., Gilbert, H. J., Pires, V. M. R., Ferreira, L. M. A., Planas, A., Romao, M. J., and Fontes, C. M. G. A. (2004) The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26ACel5E accommodates β-1,4- and β-1,3-1,4-mixed linked glucans at a single binding site, J. Biol. Chem., 279, 34785–34793.

    Article  CAS  PubMed  Google Scholar 

  35. Bowie, J. U., Luthy, R., and Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure, Science, 5019, 164–170.

    Article  Google Scholar 

  36. Fanutti, C., Ponyi, T., Black, G. W., Hazlewood, G. P., and Gilbert, H. J. (1995) The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain, J. Biol. Chem., 270, 29314–29322.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Goyal.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 7, pp. 845–863.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM13-251, March 15, 2014.

These authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Verma, A.K., Gautam, S. et al. Structure and functional investigation of ligand binding by a family 35 carbohydrate binding module (CtCBM35) of β-mannanase of family 26 glycoside hydrolase from Clostridium thermocellum . Biochemistry Moscow 79, 672–686 (2014). https://doi.org/10.1134/S0006297914070098

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914070098

Key words

Navigation