Skip to main content
Log in

Mitochondrial models of pathologies with oxidative stress. Efficiency of alkalization to reduce mitochondrial damage

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Previously, we developed a method to monitor the development of oxidative stress in isolated liver mitochondria. The method is based on recording of membrane potential changes in response to sequential introduction of low concentrations (5–20 μM) of tert-butyl hydroperoxide (tBHP). It allows monitoring of the extent of amplification or attenuation of oxidative stress caused by external influences (changes in incubation conditions, additions of biologically active substances). Based on this method, we created a mitochondrial model for the study and improvement of treatment of pathologies associated with oxidative stress. The following two processes were simulated in the experiments: 1) introduction of desferal for treatment of serious diseases caused by cell overload with iron (high desferal concentrations were shown to suppress mitochondrial energetics); 2) efficiency of alkalization to reduce mitochondrial damage induced by oxidative stress. The experiments have shown that even a small increase in pH (alkalization) increases the amount of tBHP that can be added to mitochondria before the MPTP (“mitochondrial permeability transition pore”) is induced. The effect of alkalization was shown to be close to the effect of cyclosporin A in the pH range 7.2–7.8. The mechanism of the similarities of these effects in the organism and in mitochondrial suspensions is explained by the increase in toxic reactive oxygen species in both systems under oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DSF:

desferal

MPTP:

mitochondrial permeability transition pore

tBHP:

tert-butyl hydroperoxide

Δψ:

transmembrane difference of electrical potentials on the inner mitochondrial membrane

References

  1. Kowaltowski, A. J., and Vercesi, A. E. (1999) Free Radic. Biol. Med., 26, 463–471.

    Article  PubMed  CAS  Google Scholar 

  2. Papa, S., and Skulachev, V. P. (1997) Mol. Cell Biochem., 174, 305–319.

    Article  PubMed  CAS  Google Scholar 

  3. Haworth, R. A., and Hunter, D. R. (2000) J. Bioenerg. Biomembr., 32, 91–96.

    Article  PubMed  CAS  Google Scholar 

  4. Kowaltowski, A. J., Netto, L. E., and Vercesi, A. E. (1998) J. Biol. Chem., 273, 12766–12769.

    Article  PubMed  CAS  Google Scholar 

  5. Vercesi, A. E., Kowaltowski, A. J., Grijalba, M. T., Meinicke, A. R., and Castilho, R. F. (1997) Biosci Rep., 17, 43–52.

    Article  PubMed  CAS  Google Scholar 

  6. Cervinkova, Z., Krivakova, P., Labajova, A., Rousar, T., Lotkova, H., Kucera, O., Endlicher, R., Cervinka, M., and Drahota, Z. (2009) Arch. Toxicol., 83, 63–72.

    Article  Google Scholar 

  7. Endlicher, R., Krivakova, P., Rauchova, H., Nuskova, H., Cervinkova, Z., and Drahota, Z. (2009) Physiol. Res., 58, 685–692.

    PubMed  CAS  Google Scholar 

  8. Cao, L., Waldon, D., Teffera, Y., Roberts, J., Wells, M., Langley, M., and Zhao, Z. (2013) Anal. Bioanal. Chem., 405, 2635–2642.

    Article  PubMed  CAS  Google Scholar 

  9. Fedotcheva, N. I., and Mokhova, E. N. (2013) Biochemistry (Moscow), 78, 75–79.

    Article  CAS  Google Scholar 

  10. Pardo Andreu, G. L., Inada, N. M., Vercesi, A. E., and Curti, C. (2009) Arch. Toxicol., 83, 47–53.

    Article  PubMed  CAS  Google Scholar 

  11. Devanur, L. D., Evans, R. W., Evans, P. J., and Hider, R. C. (2008) Biochem. J., 409, 439–447.

    Article  PubMed  CAS  Google Scholar 

  12. Bolton, B. (compiler) (2004) An Edgar Cayce Encyclopedia of Foods for Health and Healing (McCarey, W. A., ed.), A.R.E. Press, Virginia Beach, Virginia.

  13. Fernandez, V., and Winkelmann, G. (2005) Biometals, 18, 53–62.

    Article  PubMed  CAS  Google Scholar 

  14. Sigel, S. (1956) Nonparametric Statistics in Science and Behavior, N.Y.

    Google Scholar 

  15. Broekemeier, K. M., and Pfeiffer, D. R. (1995) Biochemistry, 34, 16440–16449.

    Article  PubMed  CAS  Google Scholar 

  16. Mokhova, E. N. (2012) Biophys. Rev. Lett., 7, 1–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Mokhova.

Additional information

Original Russian Text © N. I. Fedotcheva, E. N. Mokhova, 2013, published in Biokhimiya, 2013, Vol. 78, No. 11, pp. 1643–1648.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotcheva, N.I., Mokhova, E.N. Mitochondrial models of pathologies with oxidative stress. Efficiency of alkalization to reduce mitochondrial damage. Biochemistry Moscow 78, 1293–1297 (2013). https://doi.org/10.1134/S0006297913110102

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913110102

Key words

Navigation