Skip to main content
Log in

Effect of calcium ions on electron transfer between hemes a and a 3 in cytochrome c oxidase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Kinetics of the reduction of the hemes in cytochrome c oxidase in the presence of high concentration of ruthenium(III)hexaammine chloride was examined using a stopped-flow spectrophotometer. Upon mixing of the oxidized enzyme with dithionite and Ru(NH3) 3+6 , three well-resolved phases were observed: heme a reduction reaching completion within a few milliseconds is followed by two slow phases of heme a 3 reduction. The difference spectrum of heme a 3 reduction in the visible region is characterized by a maximum at ∼612 nm, rather than at 603 nm as was believed earlier. It is shown that in the case of bovine heart cytochrome c oxidase containing a special cation-binding site in which reversible binding of calcium ion occurs, heme a 3 reduction is slowed down by low concentrations of Ca2+. The effect is absent in the case of the bacterial cytochrome oxidase in which the cation-binding site contains a tightly bound Ca2+ ion. The data corroborate the inhibition of the cytochrome oxidase enzymatic activity by Ca2+ ions discovered earlier and indicate that the cation affects intramolecular electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CBS:

cation-binding site

COX:

cytochrome c oxidase

RuAm:

hexaammineruthenium (Ru(NH3) 3+6 )

References

  1. Ferguson-Miller, S., and Babcock, G. T. (1996) Chem. Rev., 7, 2889–2907.

    Article  Google Scholar 

  2. Belevich, I., and Verkhovsky, M. I. (2008) Antiox. Redox Signal., 10, 1–29.

    Article  CAS  Google Scholar 

  3. Yoshikawa, S., Muramoto, K., and Shinzawa-Itoh, K. (2011) Annu. Rev. Biophys., 40, 205–223.

    Article  PubMed  CAS  Google Scholar 

  4. Tsukihara, T., Aoyama, H., Yamashita, E., Takashi, T., Yamaguichi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) Science, 272, 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  5. Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998) Science, 280, 1723–1729.

    Article  PubMed  CAS  Google Scholar 

  6. Ostermeier, C., Harrenga, A., Ermler, U., and Michel, H. (1997) Proc. Natl. Acad. Sci. USA, 94, 10547–10553.

    Article  PubMed  CAS  Google Scholar 

  7. Pfitzner, U., Kirichenko, A., Konstantinov, A. A., Mertens, M., Wittershagen, A., Kolbesen, B. O., Steffens, G. C. M., Harrenga, A., Michel, H., and Ludwig, B. (1999) FEBS Lett., 456, 365–369.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, A., Kirichenko, A., Vygodina, T., Siletsky, S. A., Das, T. K., Rousseau, D. L., Gennis, R. A., and Konstantinov, A. A. (2002) Biochemistry, 41, 8886–8898.

    Article  PubMed  CAS  Google Scholar 

  9. Kirichenko, A., Vygodina, T. V., Mkrtchyan, H. M., and Konstantinov, A. A. (1998) FEBS Lett., 423, 329–333.

    Article  PubMed  CAS  Google Scholar 

  10. Kirichenko, A. V., Pfitzner, U., Ludwig, B., Soares, C. M., Vygodina, T. V., and Konstantinov, A. A. (2005) Biochemistry, 44, 12391–12401.

    Article  PubMed  CAS  Google Scholar 

  11. Riistama, S., Laakkonen, L., Wikstrom, M., Verkhovsky, M. I., and Puustinen, A. (1999) Biochemistry, 38, 10670–10677.

    Article  PubMed  CAS  Google Scholar 

  12. Wikstrom, M., and Saari, H. (1975) Biochim. Biophys. Acta, 408, 170–179.

    Article  PubMed  CAS  Google Scholar 

  13. Saari, H., Pentilla, T., and Wikstrom, M. (1980) J. Bioenerg. Biomembr., 12, 325–338.

    Article  PubMed  CAS  Google Scholar 

  14. Mkrtchyan, H., Vygodina, T., and Konstantinov, A. A. (1990) Biochem. Int., 20, 183–190.

    PubMed  CAS  Google Scholar 

  15. Vygodina, T. V., Ptushenko, V. V., and Konstantinov, A. A. (2008) Biochim. Biophys. Acta, 1777, S110–S111.

    Google Scholar 

  16. Konstantinov, A. A. (2010) Biochim. Biophys. Acta, 1797 (Suppl.), 92.

    Google Scholar 

  17. Vygodina, T. V., and Konstantinov, A. A. (2010) Biochim. Biophys. Acta, 1797, 102.

    Google Scholar 

  18. Scott, R. A., and Gray, H. B. (1980) J. Am. Chem. Soc., 102, 3219–3224.

    Article  CAS  Google Scholar 

  19. Hochman, J. H., Partridge, B., and Ferguson-Miller, S. (1981) J. Biol. Chem., 256, 8693–8698.

    PubMed  CAS  Google Scholar 

  20. Reichardt, J. K. V., and Gibson, Q. H. (1982) J. Biol. Chem., 257, 9268–9270.

    PubMed  CAS  Google Scholar 

  21. Tsofina, L. M., Liberman, E. A., Vygodina, T. V., and Konstantinov, A. A. (1986) Biochem. Int., 12, 103–110.

    PubMed  CAS  Google Scholar 

  22. Fowler, L. R., Richardson, S. H., and Hatefi, Y. (1962) Biochim. Biophys. Acta, 64, 170–173.

    Article  PubMed  CAS  Google Scholar 

  23. Mitchell, D. M., and Gennis, R. B. (1995) FEBS Lett., 368, 148–150.

    Article  PubMed  CAS  Google Scholar 

  24. Halaka, F. G., Babcock, G. T., and Dye, J. L. (1981) J. Biol. Chem., 256, 1084–1087.

    PubMed  CAS  Google Scholar 

  25. Orii, Y. (2008) J. Bioenerg. Biomembr., 30, 47–53.

    Article  Google Scholar 

  26. Lambeth, D. O., Campbell, K. L., Zand, R., and Palmer, G. (1973) J. Biol. Chem., 248, 8130–8136.

    PubMed  CAS  Google Scholar 

  27. Nilsson, T. (1992) Proc. Natl. Acad. Sci. USA, 89, 6497–6501.

    Article  PubMed  CAS  Google Scholar 

  28. Zaslavsky, D., Kaulen, A., Smirnova, I. A., Vygodina, T. V., and Konstantinov, A. A. (1993) FEBS Lett., 336, 389–393.

    Article  PubMed  CAS  Google Scholar 

  29. Jancura, D., Antalik, M., Berka, V., Palmer, G., and Fabian, M. (2006) J. Biol. Chem., 281, 20003–20010.

    Article  PubMed  CAS  Google Scholar 

  30. Jancura, D., Berka, V., Antalik, M., Bagelova, J., Gennis, R. B., Palmer, G., and Fabian, M. (2006) J. Biol. Chem., 281, 30319–30325.

    Article  PubMed  CAS  Google Scholar 

  31. Moody, A. J. (1996) Biochim. Biophys. Acta, 1276, 6–20.

    Article  PubMed  Google Scholar 

  32. Wikstrom, M., Krab, K., and Saraste, M. (1981) Cytochrome Oxidase — a Synthesis, Academic Press, N. Y.

    Google Scholar 

  33. Zimmermann, B. H., Nitsche, C. I., Fee, J. A., Rusnak, F., and Munck, E. (1988) Proc. Natl. Acad. Sci. USA, 85, 5779–5783.

    Article  PubMed  CAS  Google Scholar 

  34. Oertling, W. A., Surerus, K. K., Einarsdottir, O., Fee, J. A., Dyer, R. B., and Woodruff, W. H. (1994) Biochemistry, 33, 3128–3141.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Vygodina.

Additional information

Published in Russian in Biokhimiya, 2012, Vol. 77, No. 8, pp. 1095–1104.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM12-049, June 17, 2012.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vygodina, T.V., Dyuba, A.V. & Konstantinov, A.A. Effect of calcium ions on electron transfer between hemes a and a 3 in cytochrome c oxidase. Biochemistry Moscow 77, 901–909 (2012). https://doi.org/10.1134/S0006297912080111

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912080111

Key words

Navigation