Skip to main content
Log in

Influence of centrin 2 on the interaction of nucleotide excision repair factors with damaged DNA

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We have examined the influence of centrin 2 (Cen2) on the interaction of nucleotide excision repair factors (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes bearing the dUMP derivative 5-{3-[6-(carboxyamidofluores-ceinyl)amidocapromoyl]allyl}-2′-deoxyuridine-5′-monophosphate. The fluorescein residue linked to the nucleotide base imitates a bulky lesion of DNA. Cen2 stimulated the binding and increased the yield of DNA adducts with XPC-HR23b, a protein recognizing bulky damages in DNA. Stimulation of the binding was most pronounced in the presence of Mg2+ and demonstrated a bell-shaped dependence on Cen2 concentration. The addition of Cen2 changed the stoichiometry of RPA-DNA complexes and diminished the yield of RPA-DNA covalent crosslinks. We have shown that Cen2 influences the binding of RPA and XPA with DNA, which results in formation of additional DNA-protein complexes possibly including Cen2. We have also found some evidence of direct contacts between Cen2 and DNA. These results in concert with the literature data suggest that Cen2 can be a regulatory element in the nucleotide excision repair system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cen2:

centrin 2

Flu-dUMP:

5-{3-[6-(carboxyamidofluoresceinyl)amidocapromoyl]allyl}-2′-deoxyuridine-5′-monophosphate

5I-dUMP:

5-iodo-2′-deoxyuridine-5′-monophosphate

NER:

nucleotide excision repair

RPA:

replicative protein A

XPA:

Xeroderma pigmentosum factor of complementation group A

XPC-HR23b:

Xeroderma pigmentosum factor of complementation group C complexed with yeast protein Rad23 homolog

References

  1. Aboussekhra, A., Biggerstaff, M., Shivji, M. K., Vilpo, J. A., Moncollin, V., Podust, V. N., Protic, M., Hubscher, U., Egly, J. M., and Wood, R. D. (1995) Cell, 80, 859–868.

    Article  PubMed  CAS  Google Scholar 

  2. Evans, E., Moggs, J. G., Hwang, J. R., Egly, J. M., and Wood, R. D. (1997) EMBO J., 16, 6559–6573.

    Article  PubMed  CAS  Google Scholar 

  3. Sugasawa, K., Masutani, C., Uchida, A., Maekawa, T., van der Spek, P. J., Bootsma, D., Hoeijmakers, J. H., and Hanaoka, F. (1996) Mol. Cell Biol., 16, 4852–4861.

    PubMed  CAS  Google Scholar 

  4. Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., Sugasawa, K., and Hanaoka, F. (2005) Mol. Cell Biol., 25, 5664–5674.

    Article  PubMed  CAS  Google Scholar 

  5. Okuda, Y., Nishi, R., Ng, J. M. Y., Vermeulend, W., van der Horst, G. T. J., Mori, T., Hoeijmakers, J. H. J., Hanaoka, F., and Sugasawa, K. (2004) DNA Repair, 3, 1285–1295.

    Article  PubMed  CAS  Google Scholar 

  6. Molinier, J., Ramos, C., Fritsch, O., and Hohn, B. (2004) Plant Cell, 16, 1633–1643.

    Article  PubMed  CAS  Google Scholar 

  7. Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W., and Madura, K. (1998) Nature, 391, 715–718.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, L., and Madura, K. (2008) Mol. Cell Biol., 28, 1829–1840.

    Article  PubMed  CAS  Google Scholar 

  9. Popescu, A., Miron, S., Blouquit, Y., Duchambon, P., Christova, P., and Craescu, C. T. (2003) J. Biol. Chem., 278, 40252–40261.

    Article  PubMed  CAS  Google Scholar 

  10. Miron, S., Duchambon, P., Blouquit, Y., Durand, D., and Craescu, C. T. (2008) Biochemistry, 47, 1403–1413.

    Article  PubMed  CAS  Google Scholar 

  11. Thompson, J. R., Ryan, Z. C., Salisbury, J. L., and Kumar, R. (2006) J. Biol. Chem., 281, 18746–18752.

    Article  PubMed  CAS  Google Scholar 

  12. Yang, A., Miron, S., Mouawad, L., Duchambon, P., Blouquit, Y., and Craescu, C. T. (2006) Biochemistry, 45, 3653–3663.

    Article  PubMed  CAS  Google Scholar 

  13. Klein, U. R., and Nigg, E. A. (2009) J. Cell Sci., 122, 3312–3321.

    Article  PubMed  CAS  Google Scholar 

  14. Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., and Hanaoka, F. (2001) J. Biol. Chem., 276, 18665–18672.

    Article  PubMed  CAS  Google Scholar 

  15. Henricksen, L. A., Umbricht, C. B., and Wold, M. S. (1994) J. Biol. Chem., 269, 11121–11132.

    PubMed  CAS  Google Scholar 

  16. Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O., Silnikov, V. N., Zatsepin, T. S., Oretskaya, T. S., Sherer, O. D., and Lavrik, O. I. (2008) Biochemistry (Moscow), 73, 886–896.

    Article  CAS  Google Scholar 

  17. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn., Cold Spring Harbor Laboratory Press, N. Y.

    Google Scholar 

  18. Yamshchikov, V. F. (1990) in Molecular Methods of Molecular Genetics and Gene Engineering (Salganik, R. I., ed.) [in Russian], Nauka, Novosibirsk, pp. 145–154.

    Google Scholar 

  19. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  20. Moll, J. R., Acharya, A., Gal, J., Mir, A. A., and Vinson, C. (2002) Nucleic Acids Res., 30, 1240–1246.

    Article  PubMed  CAS  Google Scholar 

  21. Matei, E., Miron, S., Blouquit, Y., Duchambon, P., Durussel, I., Cox, J. A., and Craescu, C. T. (2003) Biochemistry, 42, 1439–1450.

    Article  PubMed  CAS  Google Scholar 

  22. Kushwaha, R., Singh, A., and Chattopadhyay, S. (2008) Plant Cell, 20, 1747–1759.

    Article  PubMed  CAS  Google Scholar 

  23. Maltseva, E. A., Rechkunova, N. I., Gillet, L. C., Petruseva, I. O., Scharer, O. D., and Lavrik, O. I. (2007) Biochim. Biophys. Acta, 1770, 781–789.

    Article  PubMed  CAS  Google Scholar 

  24. Patrick, S. M., and Turchi, J. J. (2002) J. Biol. Chem., 277, 16096–16101.

    Article  PubMed  CAS  Google Scholar 

  25. He, Z., Henricksen, L. A., Wold, M. S., and Ingles, C. J. (1995) Nature, 374, 566–569.

    Article  PubMed  CAS  Google Scholar 

  26. Li, L., Lu, X., Peterson, C. A., and Legerski, R. J. (1995) Mol. Cell Biol., 15, 5396–5402.

    PubMed  CAS  Google Scholar 

  27. Charbonnier, J.-B., Renaud, E., Miron, S., Le Du, M. H., Blouquit, Y., Duchambon, P., Christova, P., Shosheva, A., Rose, T., Angulo, J. F., and Craescu, C. T. (2007) J. Mol. Biol., 373, 1032–1046.

    Article  PubMed  CAS  Google Scholar 

  28. Renaud, E., Miccoli, L., Zacal, N., Biard, D. S., Craescu, C. T., Rainbow, A. J., and Angulo, J. F. (2011) DNA Repair (Amst.), 10, 835–847.

    Article  CAS  Google Scholar 

  29. Wold, M. S. (1997) Annu. Rev. Biochem., 66, 61–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Lavrik.

Additional information

Original Russian Text © Y. S. Krasikova, N. I. Rechkunova, E. A. Maltseva, C. T. Craescu, I. O. Petruseva, O. I. Lavrik, 2012, published in Biokhimiya, 2012, Vol. 77, No. 4, pp. 442–451.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM11-294, February 19, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasikova, Y.S., Rechkunova, N.I., Maltseva, E.A. et al. Influence of centrin 2 on the interaction of nucleotide excision repair factors with damaged DNA. Biochemistry Moscow 77, 346–353 (2012). https://doi.org/10.1134/S0006297912040050

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912040050

Key words

Navigation