Skip to main content
Log in

Properties of yeast Saccharomyces cerevisiae plasma membrane dicarboxylate transporter

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Transport of succinate into Saccharomyces cerevisiae cells was determined using the endogenous coupled mitochondrial succinate oxidase system. The dependence of succinate oxidation rate on the substrate concentration was a curve with saturation. At neutral pH the K m value of the mitochondrial “succinate oxidase” was fivefold less than that of the cellular “succinate oxidase”. O-Palmitoyl-L-malate, not penetrating across the plasma membrane, completely inhibited cell respiration in the presence of succinate but not glucose or pyruvate. The linear inhibition in Dixon plots indicates that the rate of succinate oxidation is limited by its transport across the plasmalemma. O-Palmitoyl-L-malate and L-malate were competitive inhibitors (the K i values were 6.6 ± 1.3 μM and 17.5 ± 1.1 mM, respectively). The rate of succinate transport was also competitively inhibited by the malonate derivative 2-undecyl malonate (K i = 7.8 ± 1.2 μM) but not phosphate. Succinate transport across the plasma membrane of S. cerevisiae is not coupled with proton transport, but sodium ions are necessary. The plasma membrane of S. cerevisiae is established to have a carrier catalyzing the transport of dicarboxylates (succinate and possibly L-malate and malonate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaughan-Martini, A., and Martini, A. (1998) Saccharomyces Meyen ex Reess, in The Yeasts, A Taxonomic Study, 4th Edn. (Kurtzman, C. P., and Fell, J. W., eds.) Elsevier Science B. V., Amsterdam, pp. 358–371.

    Google Scholar 

  2. Lodi, T., Fontanesi, F., Ferrero, I., and Donnini, C. (2004) Gene, 339, 111–119.

    Article  PubMed  CAS  Google Scholar 

  3. Salmon, J. M. (1987) Biochim. Biophys. Acta, 901, 30–34.

    Article  PubMed  CAS  Google Scholar 

  4. Camarasa, C., Bidard, F., Bony, M., Barre, P., and Dequin, S. (2001) Appl. Environ. Microbiol., 67, 4144–4151.

    Article  PubMed  CAS  Google Scholar 

  5. Grobler, J., Bauer, F., Subden, R. E., and van Vuuren, H. J. J. (1995) Yeast, 11, 1485–1491.

    Article  PubMed  CAS  Google Scholar 

  6. Aliverdieva, D. A., Mamaev, D. V., Lagutina, L. S., and Sholtz, K. F. (2006) Biochemistry (Moscow), 71, 39–45.

    Article  CAS  Google Scholar 

  7. Mamaev, D. V., Aliverdieva, D. A., Bondarenko, D. I., and Sholtz, K. F. (2006) Biochemistry (Moscow), 71, 984–995.

    Article  CAS  Google Scholar 

  8. Bondarenko, D. I., Aliverdieva, D. A., Mamaev, D. V., and Sholtz, K. F. (2004) Dokl. Akad. Nauk, 399, 693–695.

    Google Scholar 

  9. Bisaccia, F., de Palma, A., Dierks, T., Kramer, R., and Palmieri, F. (1993) Biochim. Biophys. Acta, 1142, 139–145.

    Article  PubMed  CAS  Google Scholar 

  10. Majima, E., Takeda, M., Miki, S., Shinohara, Y., and Terada, H. (2002) J. Biochem., 131, 461–468.

    PubMed  CAS  Google Scholar 

  11. Benito, B., and Lagunas, R. (1992) J. Bacteriol., 174, 3065–3069.

    PubMed  CAS  Google Scholar 

  12. Teusink, B., Diderich, J. A., Westerhoff, H. V., van Dam, K., and Walsh, M. C. (1998) J. Bacteriol., 180, 556–562.

    PubMed  CAS  Google Scholar 

  13. Sousa, M. J., Mota, M., and Leao, C. (1992) Yeast, 8, 1025–1031.

    Article  PubMed  CAS  Google Scholar 

  14. Cassio, F., and Leao, C. (1993) Yeast, 9, 743–752.

    Article  PubMed  CAS  Google Scholar 

  15. Queiros, O., Casal, M., Althoff, S., Moradas-Ferreira, P., and Leao, C. (1998) Yeast, 14, 401–407.

    Article  PubMed  CAS  Google Scholar 

  16. Harrod, C. J., Rodriguez, S. B., and Thornton, R. J. (1997) J. Ind. Microbiol. Biotechnol., 18, 379–383.

    Article  PubMed  CAS  Google Scholar 

  17. Pajor, A. M., Kahn, E. S., and Gangula, R. (2000) Biochem. J., 350, Pt. 3, 677–683.

    Article  PubMed  CAS  Google Scholar 

  18. Kahn, E. S., and Pajor, A. M. (1999) Biochemistry, 38, 6151–6156.

    Article  PubMed  CAS  Google Scholar 

  19. Pajor, A. M. (1995) J. Biol. Chem., 270, 5779–5785.

    PubMed  CAS  Google Scholar 

  20. Banuelos, M. A., Sychrova, H., Bleykasten-Grosshans, C., Souciet, J. L., and Portier, S. (1998) Microbiology, 144, Pt. 10, 2749–2758.

    Article  PubMed  CAS  Google Scholar 

  21. Martinez, P., and Persson, B. L. (1998) Mol. Gen. Genet., 258, 628–638.

    Article  PubMed  CAS  Google Scholar 

  22. Abramov, Sh. A., Kotenko, S. Ts., Dalgatova, B. I., Mammaev, A. T., and Peisakhova, D. S. (1987) USSR Patent No. 1294998, Byul. Izobret., No. 3, 111.

  23. Zinser, E., and Daum, G. (1995) Yeast, 11, 493–536.

    Article  PubMed  CAS  Google Scholar 

  24. Aliverdieva, D. A., and Sholtz, K. F. (1984) Prikl. Biokhim. Mikrobiol., 20, 823–830.

    PubMed  CAS  Google Scholar 

  25. Sholtz, K. F., and Ostrovskii, D. N. (1975) in Methods of Modern Biochemistry (Kretovich, V. L., and Sholtz, K. F., eds.) [in Russian], Nauka, Moscow, pp. 52–58.

    Google Scholar 

  26. Liu, Z., Stevens, B. R., Feldman, D. H., Hediger, M. A., and Harvey, W. R. (2003) J. Exp. Biol., 206, Pt. 2, 245–254.

    Article  PubMed  CAS  Google Scholar 

  27. Nalecz, M. J., Nalecz, K. A., and Azzi, A. (1991) Biochim. Biophys. Acta, 1079, 87–95.

    PubMed  CAS  Google Scholar 

  28. Heirwegh, K. P. M., Meuwissen, J. A. T. P., Vermeier, M., and de Smedt, H. (1988) Biochem. J., 254, 101–108.

    PubMed  CAS  Google Scholar 

  29. Polakis, E. S., Bartley, W., and Meek, G. A. (1965) Biochem. J., 97, 298–302.

    PubMed  CAS  Google Scholar 

  30. Hatefi, Y. (1985) Annu. Rev. Biochem., 54, 1015–1071.

    Article  PubMed  CAS  Google Scholar 

  31. Purwin, C., Nicolay, K., Scheffers, W. A., and Holzer, H. (1986) J. Biol. Chem., 261, 8744–8749.

    PubMed  CAS  Google Scholar 

  32. Dawson, R. M. C., Elliott, D. C., Elliott, W. H., and Jones, K. M. (1986) in Data for Biochemical Research, 3rd Edn., Clarendon Press, Oxford.

    Google Scholar 

  33. Beauvoit, B., Rigoulet, M., Raffard, G., Canioni, P., and Guerin, B. (1991) Biochemistry, 30, 11212–11220.

    Article  PubMed  CAS  Google Scholar 

  34. Hofer, M. (1997) in Yeast in Natural and Artificial Habitats (Spencer, J. F. T., and Spencer, D. M., eds.) Springer Verlag, Berlin-Heidelberg, pp. 95–132.

    Google Scholar 

  35. Cassio, F., Leao, C., and van Uden, N. (1987) Appl. Environ. Microbiol., 53, 509–513.

    PubMed  CAS  Google Scholar 

  36. Kakhniashvili, D., Mayor, J. A., Gremse, D. A., Xu, Y., and Kaplan, R. S. (1997) J. Biol. Chem., 272, 4516–4521.

    Article  PubMed  CAS  Google Scholar 

  37. Lancar-Benda, J., Foucher, B., and Saint-Macary, M. (1996) Biochemie, 78, 195–200.

    Article  Google Scholar 

  38. Corte-Real, M., Leao, C., and van Uden, N. (1989) Appl. Microbiol. Biotechnol., 31, 551–555.

    Article  CAS  Google Scholar 

  39. Greth, M. L., Chevallier, M. R., and Lacroute, F. (1977) Biochim. Biophys. Acta, 465, 138–151.

    Article  PubMed  CAS  Google Scholar 

  40. Machnicka, B., Grochowalska, R., Boniewska-Bernacka, E., Slominska, L., and Lachowicz, T. M. (2004) Biochem. Biophys. Res. Commun., 325, 1030–1036.

    Article  PubMed  CAS  Google Scholar 

  41. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., and Oliver, S. G. (1996) Science, 274, 563–567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Aliverdieva.

Additional information

Original Russian Text © D. A. Aliverdieva, D. V. Mamaev, D. I. Bondarenko, K. F. Sholtz, 2006, published in Biokhimiya, 2006, Vol. 71, No. 10, pp. 1430–1440.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM06-133, September 10, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliverdieva, D.A., Mamaev, D.V., Bondarenko, D.I. et al. Properties of yeast Saccharomyces cerevisiae plasma membrane dicarboxylate transporter. Biochemistry (Moscow) 71, 1161–1169 (2006). https://doi.org/10.1134/S0006297906100142

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906100142

Key words

Navigation