Skip to main content
Log in

Interaction of phosphorylase kinase from rabbit skeletal muscle with flavin adenine dinucleotide

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The interaction of flavin adenine dinucleotide (FAD) with rabbit skeletal muscle phosphorylase kinase has been studied. Direct evidence of binding of phosphorylase kinase with FAD has been obtained using analytical ultracentrifugation. It has been shown that FAD prevents the formation of the enzyme-glycogen complex, but exerts practically no effect on the phosphorylase kinase activity. The dependence of the relative rate of phosphorylase kinase-glycogen complex formation on the concentration of FAD has cooperative character (the Hill coefficient is 1.3). Under crowding conditions in the presence of 1 M trimethylamine-N-oxide (TMAO), FAD has an inhibitory effect on self-association of phosphorylase kinase. The data suggest that the complex of glycogen metabolism enzymes in protein-glycogen particles may function as a flavin depot in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, P. (1973) Eur. J. Biochem., 34, 1–14.

    Article  PubMed  CAS  Google Scholar 

  2. Pickett-Gies, C. R., and Walsh, D. A. (1986) Phosphorylase Kinase, in The Enzymes (Boyer, P. D., and Krebs, E. G., eds.) Vol. 17, Academic Press, Orlando, pp. 396–461.

    Google Scholar 

  3. Livanova, N.B. (1993) Biochemistry (Moscow), 58, 1234–1239.

    Google Scholar 

  4. Skuster, J. R., Chan, K. F., and Graves, D. J. (1980) J. Biol. Chem., 255, 2203–2210.

    PubMed  CAS  Google Scholar 

  5. Zander, N. F., Meyer, H. E., Hoffmann-Posorske, E., Crabb, J. W., Heilmeyer, L. M. G., Jr., and Kilimann, M. W. (1988) Proc. Natl. Acad. Sci. USA, 85, 2929–2933.

    Article  PubMed  CAS  Google Scholar 

  6. Kilimann, M. W., Zander, N. F., Kuhn, C. C., Crabb, J. W., Meyer, H. E., and Heilmeyer, L. M. G., Jr. (1988) Proc. Natl. Acad. Sci. USA, 85, 9381–9385.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen, P., Burchell, A., Foulkes, J. G., Cohen, P. T. W., Vanaman, T. C., and Nairn, A. C. (1978) FEBS Lett., 92, 287–293.

    Article  PubMed  CAS  Google Scholar 

  8. Nadeaw, O. W., Traxler, K. W., Fee, L. R., Baldwin, B. A., and Carlson, G. M. (1999) Biochemistry, 38, 2551–2559.

    Article  Google Scholar 

  9. Wilkinson, D. A., Fitzgerald, T. J., Marion, T. N., and Carlson, G. M. (1999) J. Protein Chem., 18, 157–164.

    Article  PubMed  CAS  Google Scholar 

  10. Chebotareva, N. A., Andreeva, I. E., Makeeva, V. F., Kurganov, B. I., Livanova, N. B., and Harding, S. E. (2002) Progr. Colloid Polym. Sci., 119, 70–76.

    Article  CAS  Google Scholar 

  11. Carlson, G. M., and King, M. M. (1982) FASEB J., 41, 869.

    Google Scholar 

  12. Meyer, E., Heilmeyer, L. M. G., Hashke, R. H., and Fisher, E. H. (1970) J. Biol. Chem., 245, 6642–6648.

    PubMed  CAS  Google Scholar 

  13. Morange, M., and Buc, H. (1979) Biochimie, 61, 633–643.

    PubMed  CAS  Google Scholar 

  14. Zemskova, M. A., Shur, S. A., Skolysheva, L. K., and Vulfson, P. L. (1989) Biokhimiya, 54, 662–668.

    CAS  Google Scholar 

  15. Chan, K. F., and Graves, D. J. (1982) J. Biol. Chem., 257, 5939–5947.

    PubMed  CAS  Google Scholar 

  16. Andreeva, I. E., Rice, N. A., and Carlson, J. M. (2002) Biochemistry (Moscow), 67, 1197–1202.

    Article  CAS  Google Scholar 

  17. Andreeva, I. E., Makeeva, V. F., Kurganov, B. I., Chebotareva, N. A., and Livanova, N. B. (1999) FEBS Lett., 445, 173–176.

    Article  PubMed  CAS  Google Scholar 

  18. Sprang, S., Fletterick, R., Stern, M., Yang, D., Madsen, N., and Sturtevant, J. (1982) Biochemistry, 21, 2036–2048.

    Article  PubMed  CAS  Google Scholar 

  19. Chebotareva, N. A., Kurganov, B. I., Pekel, N. D., and Berezovskii, V. M. (1986) Biochem. Int., 13, 189–197.

    PubMed  CAS  Google Scholar 

  20. Klinov, S. V., Kurganov, B. I., Pekel, N. D., and Berezovskii, V. M. (1986) Biochem. Int., 13, 139–145.

    PubMed  CAS  Google Scholar 

  21. Klinov, S. V., Kurganov, B. I., Pekel, N. D., and Berezovskii, V. M. (1986) Biochem. Int., 13, 227–232.

    PubMed  CAS  Google Scholar 

  22. Chebotareva, N. A., Klinov, S. V., and Kurganov, B. I. (2001) Biotechnol. Genet. Eng. Rev., 18, 265–297.

    PubMed  CAS  Google Scholar 

  23. Kurganov, B. I., Klinov, S. V., and Chebotareva, N. A. (1994) Uspekhi Biol. Khim., 34, 83–110.

    Google Scholar 

  24. Sundukov, S. Yu., and Solovyeva, G. A. (1989) Biokhimiya, 54, 1478–1484.

    CAS  Google Scholar 

  25. Yagi, K. (1962) Meth. Biochem. Anal., 10, 319–356.

    CAS  Google Scholar 

  26. Ellis, R. J. (2001) Trends Biochem. Sci., 26, 597–604.

    Article  PubMed  CAS  Google Scholar 

  27. Ellis, R. J., and Minton, A. P. (2003) Nature, 425, 27–28.

    Article  PubMed  CAS  Google Scholar 

  28. Minton, A. P. (2001) J. Biol. Chem., 276, 10577–10580.

    Article  PubMed  CAS  Google Scholar 

  29. Ralston, G. B. (1990) J. Chem. Educ., 67, 857–860.

    Article  CAS  Google Scholar 

  30. Zimmerman, S. B., and Minton, A. P. (1993) Annu. Rev. Biophys. Biomol. Struct., 22, 27–65.

    Article  PubMed  CAS  Google Scholar 

  31. Chebotareva, N. A., Kurganov, B. I., and Livanova, N. B. (2004) Biochemistry (Moscow), 69, 1239–1251.

    Article  CAS  Google Scholar 

  32. Bolen, D. W., and Baskakov, I. V. (2001) J. Mol. Biol., 310, 955–963.

    Article  PubMed  CAS  Google Scholar 

  33. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., and Somero, G. N. (1982) Science, 217, 1214–1222.

    PubMed  CAS  Google Scholar 

  34. Chebotareva, N. A., Harding, S. E., and Winzor, D. J. (2001) Eur. J. Biochem., 268, 506–513.

    Article  PubMed  CAS  Google Scholar 

  35. Chebotareva, N. A., Andreeva, I. E., Makeeva, V. F., Livanova, N. B., and Kurganov, B. I. (2004) J. Mol. Recogn., 17, 426–432.

    Article  CAS  Google Scholar 

  36. Chebotareva, N. A., Kurganov, B. I., Harding, S. E., and Winzor, D. J. (2005) Biophys. Chem., 113, 61–66.

    Article  PubMed  CAS  Google Scholar 

  37. Morozov, V. E., Eronina, T. B., Andreeva, I. E., Silonova, G. V., Solovyova, N. V., Schors, E. I., Livanova, N. B., and Poglazov, B. F. (1989) Biokhimiya, 54, 448–455.

    CAS  Google Scholar 

  38. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  39. Fischer, E. H., and Krebs, E. G. (1962) Meth. Enzymol., 5, 369–373.

    Article  CAS  Google Scholar 

  40. Kastenschmidt, L. L., Kastenschmidt, J., and Helmreich, E. (1968) Biochemistry, 7, 3590–3608.

    Article  PubMed  CAS  Google Scholar 

  41. Schuck, P. (2000) Biophys. J., 78, 1606–1619.

    Article  PubMed  CAS  Google Scholar 

  42. Dam, J., and Schuck, P. (2004) Meth. Enzymol., 384, 185–212.

    Article  PubMed  CAS  Google Scholar 

  43. Reimann, E. M., Walsh, D., and Krebs, E. G. (1971) J. Biol. Chem., 246, 1986–1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Makeeva.

Additional information

Published in Russian in Biokhimiya, 2006, Vol. 71, No. 6, pp. 808–814.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makeeva, V.F., Chebotareva, N.A., Andreeva, I.E. et al. Interaction of phosphorylase kinase from rabbit skeletal muscle with flavin adenine dinucleotide. Biochemistry (Moscow) 71, 652–657 (2006). https://doi.org/10.1134/S0006297906060095

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906060095

Key words

Navigation