Skip to main content
Log in

Measure-controlled dynamic systems: Polyhedral approximation of their reachable set boundary

  • Determinate Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

An algorithm for polyhedral approximation of the reachable set of impulsive dynamic control systems is designed. The boundary points of the reachable set are determined by recursively generating and solving a family of auxiliary optimal impulsive control problems with state-linear objective functional. The impulsive control problem is solved with an algorithm that implicitly reduces the problem an ordinary optimal control problem. The reduced problem thus obtained is solved with an algorithm based on local approximations of the reachable set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sousa, J. and Pereira, F., Some Questions about Hybrid Systems, Proc. Eur. Control Conf., 2001, pp. 3879–3886.

  2. Clarke, F.H., A Proximal Characterization of the Reachable Set, Syst. Control Lett., 1996, vol. 27(3), pp. 195–197.

    Article  MATH  Google Scholar 

  3. Graettinger, T. and Krogh, B., Hyperplane Method for Reachable State Estimation for Linear Time-Invariant Systems, J. Optim. Theory Appl., 1991, vol. 69, pp. 555–588.

    Article  MathSciNet  Google Scholar 

  4. Kurzhanski, A.B., Ellipsoidal Calculus for Estimation and Control, Boston: Birkhauser, 1997.

    Google Scholar 

  5. Brogliato, B., Nonsmooth Impact Mechanics: Models, Dynamics and Control, Berlin: Springer-Verlag, 1996.

    Google Scholar 

  6. Clark, C., Clarke, F., and Munro, G., The Optimal Exploitation of Renewable Stocks, Econometrica, 1979, vol. 47, pp. 25–47.

    Google Scholar 

  7. Marec, J.P., Optimal Space Trajectories, New York: Elsevier, 1979.

    Google Scholar 

  8. Arutyunov, A., Dykhta, V., and Pereira, F., Necessary Conditions for Impulsive Nonlinear Optimal Control Problems without A Priori Normality Assumptions, FEUP Int. Report, 2002.

  9. Pereira, F. and Silva, G., Necessary Conditions of Optimality for Vector-valued Impulsive Control Problems, Syst. Control Lett., 2000, vol. 40, pp. 205–215.

    Article  MathSciNet  Google Scholar 

  10. Dykhta, V.A. and Samsonyuk, O.N., Optimal’noe impul’snoe upravlenie s prilozheniyami (Optimal Pulse Control with Applications), Moscow: Fizmatlit, 2000.

    Google Scholar 

  11. Miller, B.M., The Generalized Solutions of Nonlinear Optimization Problems with Impulse Control, SIAM J. Control Optim., 1996, vol. 34, pp. 1420–1440.

    Article  MATH  MathSciNet  Google Scholar 

  12. Osnovy teorii optimal’nogo upravleniya (Elements of Optimal Control Theory), Krotov, V.F., Ed., Moscow: Nauka, 1973.

    Google Scholar 

  13. Bressan, A. and Rampazzo, F., Impulsive Control Systems with Commutative Vector Fields, J. Optim. Theory Appl., 1991, vol. 71(1), pp. 67–83.

    Article  MathSciNet  Google Scholar 

  14. Zavalishchin, S.T. and Sesekin, A.N., Impul’snye protsessy: modeli i prilozheniya (Pulse Processes: Models and Applications), Moscow: Nauka, 1991.

    Google Scholar 

  15. Dykhta, V.A. and Derenko, N.V., Numerical Methods of Solving Impulse Control Problems based on the Generalized Stationary Condition, Tr. Vseross. Nauchn. Shk.: Komp’yuternaya logika, algebra i intellektnoe upravlenie. Problemy analiza ustoichivosti razvitiya i strategicheskoi stabil’nosti (Proc. All Russian Scientific School: Computer Logic, Algebra, and Intelligent Control. Problems of Analysis of Stability Development and Strategic Stability), Irkutsk, 1994, vol. 2, pp. 59–70.

    Google Scholar 

  16. Baturin, V.A. and Goncharova, E.V., An Algorithm for Impulsive Control Problems, Proc. 10th IEEE Mediterranean Conf. Control Automation, Lisbon, 2002.

  17. Baturin, V.A. and Verkhozina, I.O., Relaxation Improvments Methods in Unbounded Linear Control Problems, Tr. 12 Baikal’skoi mezhdynar. konf. “Metody optimizatsii i ikh prilozheniya” (Proc. 12th Baikal Int. Conf. Optimization Methods and Their Application), Irkutsk, 2001, vol. 2, pp. 83–87.

    Google Scholar 

  18. Baturin, V.A. and Urbanovich, D.E., Priblizhennye metody optimal’nogo upravleniya, osnovannye na printsipe rasshireniya (Approximate Optimal Control Methods based on the Extension Principle), Novosibirsk: Nauka, 1997.

    Google Scholar 

  19. Gurman, V.I., Baturin, V.A., Danilina, E.V., et al., Novye metody uluchsheniya upravlyaemykh protsessov (New Refinement Methods for Control Processes), Novosibirsk: Nauka, 1987.

    Google Scholar 

  20. Pereira, F. and Sousa, J., On the Approximation of the Reachable Set Boundary, Proc. Controlo 2000, Guimaraes, 2000, pp. 642–646.

  21. Baturin, V.A. and Goncharova, E.V., Refinement Methods based on Approximate Reachable Set Representation, Avtom. Telemekh., 1999, no. 11, pp. 19–29.

  22. Silva, G.N. and Vinter, R.B., Necessary Conditions for Optimal Impulsive Control Problems, SIAM J. Control Optim., 1997, vol. 35, no. 6, pp. 1829–1846.

    Article  MathSciNet  Google Scholar 

  23. Silva, G.N. and Vinter, R.B., Measure Differential Inclusions, J. Math. Anal. Appl., 1996, vol. 202, pp. 727–746.

    Article  MathSciNet  Google Scholar 

  24. Gurman, V.I., Vyrozhdennye zadachi optimal’nogo upravleniya (Degenerate Optimal Control Problems), Moscow: Nauka, 1985.

    Google Scholar 

  25. Gaishun, I.V., Vpolne razreshimye mnogomernye differentsial’nye uravneniya (Completely Solvable Multidimensional Differential Equations), Minsk: Nauka i Tekhnika, 1983.

    Google Scholar 

  26. Massel’, L.V., Boldyrev, E.A., Gornov, A.Yu., et al., Integratsiya informatsionnykh tekhnologii v systemnykh issledovaniyakh energetiki (Integration of Information Technologies into Energetics Systems Research), Novosibirsk: Nauka, 2003.

    Google Scholar 

  27. Gurman, V.I., Printsip rasshireniya v zadachakh optimal’nogo upravleniya (The Extension Principle in Optimal Control Problems), Moscow: Fizmatlit, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Baturin, E.V. Goncharova, F.L. Pereira, J.B. Sousa, 2006, published in Avtomatika i Telemekhanika, 2006, No. 3, pp. 8–19.

The first and second authors were supported by the Russian Foundation for Basic Research, project nos. 05-01-00477, 05-08-50226, and the third and fourth authors were supported by INVOTAN and Funda da Ciência e Tecnologia project Cordyal.

This paper was recommended for publication by B.M. Miller, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baturin, V.A., Goncharova, E.V., Pereira, F.L. et al. Measure-controlled dynamic systems: Polyhedral approximation of their reachable set boundary. Autom Remote Control 67, 350–360 (2006). https://doi.org/10.1134/S0005117906030027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117906030027

PACS number

Navigation