Skip to main content
Log in

BSA Adsorption on Porous Scaffolds Prepared from BioPEGylated Poly(3-Hydroxybutyrate)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Porous scaffolds for tissue engineering have been prepared from poly(3-hydroxybutyrate) (PHB) and a copolymer of poly(3-hydroxybutyrate) and polyethylene glycol (PHB-PEG) produced by bioPEGylation. The morphology of the scaffolds and their capacity for adsorption of the model protein bovine serum albumin (BSA) have been studied. Scaffolds produced from bioPEGylated PHB adsorbed more BSA, whereas the share of protein irreversibly adsorbed on these scaffolds was significantly lower (33%) than in the case of PHB homopolymer-based scaffolds (47%). The effect of protein adsorption on scaffold biocompatibility in vitro was tested in an experiment that involved the cultivation of fibroblasts (line COS-1) on the scaffolds. PHB-PEG scaffolds had a higher capacity for supporting cell growth than PHB-based scaffolds. Thus, the bioPEGylated PHB-based polymer scaffolds developed in the present study have considerable potential for use in soft tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, J., You, M., Li, J., and Li, Z., Mater. Sci. Eng. C Mater. Biol. Appl., 2017, vol. 79, pp. 917–929.

    Article  PubMed  CAS  Google Scholar 

  2. Bonartsev, A.P., Bonartseva, G.A., Shaitan, K.V., and Kirpichnikov, M.P., Biomed. Khim., 2011, vol. 57, no. 4, pp. 374–391.

    Article  PubMed  CAS  Google Scholar 

  3. Chan, R.T., Marcal, H., Ahmed, T., Russell, R.A., Holden, P.J., and Foster, L.J.R., Polymer Int., 2013, vol. 62, no. 6, pp. 884–892.

    Article  CAS  Google Scholar 

  4. Dominguez-Diaz, M., Meneses-Acosta, A., Romo-Uribe, A., Pena, C., Segura, D., and Espin, G., Eur. Polym. J., 2015, vol. 63, pp. 101–112.

    Article  CAS  Google Scholar 

  5. Bonartsev, A.P., Yakovlev, S.G., Zharkova, I.I., Boskhomdzhiev, A.P., Bagrov, D.V., Myshkina, V.L., Makhina, T.K., Kharitonova, E.P., Samsonova, O.V., Feofanov, A.V., Voinova, V.V., Zernov, A.L., Efremov, Yu.M., Bonartseva, G.A., Shaitan, K.V., and Kirpichnikov, M.P., BMC Biochem., 2013, vol. 14, p.12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bonartsev, A.P., Zharkova, I.I., Yakovlev, S.G., Myshkina, V.L., Mahina, T.K., Voinova, V.V., Zernov, A.L., Zhuikov, V.A., Akoulina, E.A., Ivanova, E.V., Kuznetsova, E.S., Shaitan, K.V., and Bonartseva, G.A., Prep. Biochem. Biotechnol., 2017, vol. 47, no. 2, pp. 173–184.

    Article  PubMed  CAS  Google Scholar 

  7. Chan, R.T., Russell, R.A., Marcal, H., Lee, T.H., Holden, P.J., and Foster, L.J., Biomacromolecules, 2014, vol. 15, no. 1, pp. 339–349.

    Article  PubMed  CAS  Google Scholar 

  8. Cheng, G., Cai, Z., and Wang, L., J. Mater. Sci. Mater. Med., 2003, vol. 14, no. 12, pp. 1073–1078.

    Article  PubMed  CAS  Google Scholar 

  9. Nemets, E.A., Efimov, A.E., Egorova, V.A., Tonevitsky, A.G., and Sevastianov, V.I., Bull. Exp. Biol. Med., 2008, vol. 145, no. 3, pp. 371–373.

    Article  PubMed  CAS  Google Scholar 

  10. Monnier, A., Rombouts, C., Kouider, D., About, I., Fessi, H., and Sheibat-Othman, N., Int. J. Pharm., 2016, vol. 513, nos. 1–2, pp. 49–61.

    Article  PubMed  CAS  Google Scholar 

  11. Biosovmestimye materialy: Uchebnoe posobie (Biocompatible Materials: A Textbook), Sevast’yanov, V.I. and Kirpichnikov, M.P., Eds., Moscow: Med. Inform. Agentstvo, 2011.

  12. Reusch, R.N., Med. Hypotheses, 2015, vol. 85, no. 6, pp. 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  13. Pavlova, E.R., Bagrov, D.V., Kopitsyna, M.N., Shchelokov, D.A., Bonartsev, A.P., Zharkova, I.I., Mahina, T.K., Myshkina, V.L., Bonartseva, G.A., Shaitan, K.V., and Klinov, D.V., J. Appl. Polym. Sci., 2017, vol. 134, p. 45090.

    Article  CAS  Google Scholar 

  14. Atkins, T.W. and Peacock, S.J., J. Biomater. Sci. Polym. Ed., 1996, vol. 7, no. 12, pp. 1065–1073.

    Article  PubMed  CAS  Google Scholar 

  15. Baran, E.T., Ozer, N., and Hasirci, V., J. Microencapsul., 2002, vol. 19, no. 3, pp. 363–376.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu, X.H., Wang, C.H., and Tong, Y.W., J. Biomed. Mater. Res. A, 2009, vol. 89, no. 2, pp. 411–423.

    Article  PubMed  CAS  Google Scholar 

  17. Myshkina, V.L., Nikolaeva, D.A., Makhina, T.K., Bonartsev, A.P., and Bonartseva, G.A., Appl. Biochem. Microbiol., 2008, vol. 44, no. 5, pp. 482–486.

    Article  CAS  Google Scholar 

  18. Kundu, J., Pati, F., Hun Jeong, Y., and Cho, D.W., in Biomaterials for Biofabrication of 3D Tissue Scaffolds. Biofabrication: Micro-and Nano-Fabrication, Printing, Patterning and Assemblies, Forgacs, G. and Sun, W., Eds., Oxford, UK: Elsevier, 2013, pp. 23–46.

  19. Bonartsev, A.P., Zharkova, I.I., Yakovlev, S.G., Myshkina, V.L., Makhina, T.K., Zernov, A.L., Kudryashova, K.S., Feofanov, A.V., Akulina, E.A., Ivanova, E.V., Zhuikov, V.A., Volkov, A.V., Andreeva, N.V., Voinova, V.V., Bonartseva, G.A., Shaitan, K.V., and Kirpichnikov, M.P., J. Biomater. Tissue Eng., 2016, vol. 6, no. 1, pp. 42–52.

    Article  Google Scholar 

  20. Karageorgiou, V. and Kaplan, D., Biomaterials, 2005, vol. 26, no. 27, pp. 5474–5491.

    Article  PubMed  CAS  Google Scholar 

  21. Bian, Y.Z., Wang, Y., Aibaidoula, G., Chen, G.Q., and Wu, Q., Biomaterials, 2009, vol. 30, no. 2, pp. 217–225.

    Article  PubMed  CAS  Google Scholar 

  22. Venault, A., Subarja, A., and Chang, Y., Langmuir, 2017, vol. 33, no. 9, pp. 2460–2471.

    Article  PubMed  CAS  Google Scholar 

  23. Zhan, J., Wang, L., Liu, S., Chen, J., Ren, L., and Wang, Y., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 25, pp. 13876–13881.

    Article  PubMed  CAS  Google Scholar 

  24. Peng, Q., Wei, X.Q., Yang, Q., Zhang, S., Zhang, T., Shao, X.R., Cai, X.X., Zhang, Z.R., and Lin, Y.F., Int. J. Nanomedicine, 2015, vol. 10, no. 2, pp. 205–214.

    Article  CAS  Google Scholar 

  25. Kulikova, T., Akhtar, R., Aldebert, P., Althorpe, N., Andersson, M., Baldwin, A., Bates, K., Bhattacharyya, S., Bower, L., Browne, P., Castro, M., Cochrane, G., Duggan, K., Eberhardt, R., Faruque, N., Hoad, G., Kanz, C., Lee, C., Leinonen, R., Lin, Q., Lombard, V., Lopez, R., Lorenc, D., McWilliam, H., Mukherjee, G., Nardone, F., Pastor, M.P., Plaister, S., Sobhany, S., Stoehr, P., Vaughan, R., Wu, D., Zhu, W., and Apweiler, R., Nucleic Acids Res., 2007, vol. 35, suppl. 1, pp. D16–D20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Voinova.

Additional information

Original Russian Text © A.P. Bonartsev, V.V. Voinova, E.S. Kuznetsova, I.I. Zharkova, T.K. Makhina, V.L. Myshkina, D.V. Chesnokova, K.S. Kudryashova, A.V. Feofanov, K.V. Shaitan, G.A. Bonartseva, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonartsev, A.P., Voinova, V.V., Kuznetsova, E.S. et al. BSA Adsorption on Porous Scaffolds Prepared from BioPEGylated Poly(3-Hydroxybutyrate). Appl Biochem Microbiol 54, 379–386 (2018). https://doi.org/10.1134/S0003683818040038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818040038

Keywords

Navigation