Skip to main content
Log in

Promotional mechanism of high glycerol productivity in the aerobic batch fermentation of Candida glycerinogenes after feeding several amino acids

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

To disclose the addition of some strong promotional amino acids (namely glycine, glutamate, lysine and aspartic acid) is how to improve the glycerol productivity of Candida glycerinogenes. An amino acid addition strategy based on dynamic enzyme activity was applied to improve glycerol productivity and decrease the byproducts formation in a fermentation of C. glycerinogenes in a 7-1 bioreactor. Compared with the control, after feeding glycine, glutamate, lysine and aspartic acid, glycerol productivity obtained an increase of 22.3, 25.6, 23.5 and 28.6%, respectively; meanwhile, the amounts of ethanol, acetic acid and pyruvate decreased largely. Whichever glycine, lysine, glutamate or aspartic acid was fed could elevate the activities of glucose-6-phosphate dehydrogenase (G6PDH), citrate synthase (CIT), triosephosphate isomerase (TPI) and cytoplasmic NAD+AEAAKw-dependent glycerol-3-phosphate dehydrogenase (ctGPD), and reduce the activities of pyruvate kinase (PYK), phosphofructokinase (PFK) and alcohol dehydrogenase (ADH). The reason of glycerol overproduction by the yeasts after feeding glycine, glutamate, lysine or aspartic acid is that the anaplerosis of intermediate metabolites in TCA cycle for amino acid degradation can decrease the flux from Embden-Meyerhof-Parnas (EMP) pathway to TCA cycle and enhance the flux through glycerol biosynthesis pathway. Above all, not only the high active hexose monophosphate (HMP) pathway but also the high dihydroxyacetone phosphate (DHAP) level plays an important role in the high glycerol productivity of C. glycerinogenes. The strategy of amino acid supplement is significant and can be economically implemented by an online process control strategy for higher yield of glycerol in industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z.X., Zhuge, J., and Prior, B.A., Biotechnol. Adv., 2001, vol. 19, no. 1, pp. 210–223.

    Google Scholar 

  2. Zhuge, J., Fang, H.Y., and Wang, Z.X., Appl. Microbiol. Biotechnol., 2001, vol. 55, no. 4, pp. 686–692.

    Article  PubMed  CAS  Google Scholar 

  3. Jin, H.R., Fang, H.Y., and Zhuge, J., Biotechnol. Letts., 2003, vol. 25, no. 2, pp. 311–314.

    Article  CAS  Google Scholar 

  4. Xie, T., Fang, H.Y., and Zhuge, J., Chinese J. Biotechnol., 2006, vol. 22, no. 1, pp. 138–143.

    CAS  Google Scholar 

  5. Xie, T., Fang, H.Y., and Zhuge, J., Chinese J. Process Eng., 2006, vol. 12, no. 6, pp. 623–626.

    Google Scholar 

  6. Jin, H.R., Fang, H.Y., and Zhuge, J., Acta Microbiologica Sinica, 2001, vol. 41, no. 3, pp. 704–708.

    PubMed  CAS  Google Scholar 

  7. Compagno, C., Boschi, F., and Ranzi, B.M., Biotechnol. Prog., 1996, vol. 12, no. 3, pp. 591–595.

    Article  PubMed  CAS  Google Scholar 

  8. van Hoek, P., van Dijken, J.P., and Pronk, J.T., Enzyme Microb. Technol., 2000, vol. 26, no. 3, pp. 724–736.

    Article  PubMed  Google Scholar 

  9. Postma, E., Scheffers, W.A., and van Dijken, J.P., J. Gen Microbiol., 1998, vol. 134, no. 5, pp. 1109–1116.

    Google Scholar 

  10. Fernanda, G.R., Marcela, Z.R., and Attilio, C., Enzyme Microb. Technol., 2003, vol. 32, no. l, pp. l07–113.

    Google Scholar 

  11. Lemos, D., Salomon, M., Gomes, V., Phan, V.N., and Buchholz, E., Comp. Biochem. Physiol. Part B., 2003, vol. 135, no. 4, pp. 707–719.

    Article  CAS  Google Scholar 

  12. Postma, E., Verduyn, C., and Scheffers, W.A., Appl. Env. Microbiol., 1989, vol. 53, no. 1, pp. 468–477.

    Google Scholar 

  13. Blomberg, A. and Adler, L., J. Bacteriol., vol. 171, no. 5, pp. 1087–1092.

  14. Braford, M.M., Anal. Biochem., 1976, vol. 72, no. 2, pp. 248–254.

    Article  Google Scholar 

  15. Spencer, J.F. and Shu, P., Can. J. Microbiol., 1957, vol. 3, no. 3, pp. 559–567.

    Article  PubMed  CAS  Google Scholar 

  16. Compagno, C., Boschi, F., and Ranzi, B., Biocat. Biotransform., 1998, vol. 16, no. l, pp. 135–143.

    Article  CAS  Google Scholar 

  17. Ansell, R. and Adler, L., FEBS Letts., 1999, vol. 461, no. 1, pp. 173–177.

    Article  CAS  Google Scholar 

  18. Overkamp, K.M., Bakker, B.M., and Kotter, P., Appl. Environ. Microbiol., 2002, vol. 68, no. 8, pp. 2814–2821.

    Article  PubMed  CAS  Google Scholar 

  19. Chen, P.F., and Harcum, S.W., J. Biotechnol., vol. 117, no. 2, pp. 277–286.

  20. Mahishi, L.H., and Rawai, S.K., World J. Microbol. Biotechnol., 2002, vol. 18, no. 5, pp. 805–810.

    Article  CAS  Google Scholar 

  21. Zhang, Y.G., Shen, W., and Rao, Z.M., Curr. Microbiol., 2007, vol. 56, no. 2, pp. 147–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Xie.

Additional information

Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2009, Vol. 45, No. 3, pp. 338–343.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, T., Fang, H.Y., Zhuge, B. et al. Promotional mechanism of high glycerol productivity in the aerobic batch fermentation of Candida glycerinogenes after feeding several amino acids. Appl Biochem Microbiol 45, 303–308 (2009). https://doi.org/10.1134/S0003683809030119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683809030119

Keywords

Navigation