Skip to main content
Log in

Antioxidant activities of cultured Armillariella mellea

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the antioxidant activities of a cultured medicinal fungus—Armillariella mellea (Vahl. ex Fr.) Karst. (AM). Three antioxidant assay systems, namely cytochrome c, xanthine oxidase inhibition, and FeCl2-ascorbic acid stimulated lipid peroxidation in rat tissue homogenate tests, were used. Total flavonoid and phenol contents of AM extracts were also analyzed. Results showed that both aqueous (AM-H2O) and ethanolic (AM-EtOH) extracts of solid state cultured AM showed antioxidant activities in a concentration-dependent manner. At concentrations 1–100 μg/ml, the free radical scavenging activity was 73.7–92.1% for AM-H2O, and 60.0–90.8% for AM-EtOH. These extracts also showed an inhibitory effect on xanthine oxidase activity, but with a lesser potency (IC50 is 9.17 μg/ml for AM-H2O and 7.48 μg/ml for AM-EtOH). In general, AM-H2O showed a stronger antilipid peroxidation activity on different rat’s tissues than AM-EtOH. However, both AM extracts displayed a weak inhibitory effect on lipid peroxidation in plasma. Interestingly, the antilipid peroxidation activity of AM-H2O (IC50–6.66 μg/ml) in brain homogenate was as good as IC50–5.42 μg/ml. AM-H2O (80.0 mg/g) possessed a significantly higher concentration of total flavonoids than AM-EtOH (30.0 mg/g), whereas no difference was noted in the total phenol content between these two extracts. These results conclude that AM extracts possess potent free radical scavenging and antilipid peroxidation activities, especially the AM-H2O in the brain homogenate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulkley, G.B., Surgery, 1983, vol. 94, no. 4, pp. 407–411.

    PubMed  CAS  Google Scholar 

  2. Dormandy, T.L., Lancet, 1983, vol. 2, no. 8359, pp. 1010–1014.

    Article  PubMed  CAS  Google Scholar 

  3. Ceriello, A., Metabolism, 2000, vol. 49, no. 1, pp. 27–29.

    Article  PubMed  CAS  Google Scholar 

  4. Ames, B.N., Gold, L.S., and Willet, W.C., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 12, pp. 5258–5265.

    Article  PubMed  CAS  Google Scholar 

  5. Diaz, M.N., Frei, B., and Keaney, J.F., New Engl. J. Med., 1997, vol. 337, no. 6, pp. 408–416.

    Article  PubMed  CAS  Google Scholar 

  6. Christen, Y., Am. J. Clin. Nutr., 2000, vol. 71, no. 2, pp. 621S–629S.

    PubMed  CAS  Google Scholar 

  7. Lang, A.E. and Lozano, A.M., New Engl. J. Med., 1998, vol. 339, no. 16, pp. 111–114.

    Article  Google Scholar 

  8. Cheng, H.Y., Lin, T.C., Yu, K.H., Yang, C.M., and Lin, C.C., Biol. Pharm. Bull., 2003, vol. 26, no. 9, pp. 1331–1335.

    Article  PubMed  CAS  Google Scholar 

  9. Halliwell, B. and Gutteridge, J.M.C., Methods Enzymol., 1990, vol. 186, pp. 1–85.

    Article  PubMed  CAS  Google Scholar 

  10. Davies, K.J.A., IUBMB Life, 2000, vol. 50, nos. 4–5, pp. 279–289.

    Article  PubMed  CAS  Google Scholar 

  11. Young, L.S. and Woodside, J.V., J. Clin. Pathol., 2001, vol. 54, no. 3, pp. 176–186.

    Article  PubMed  CAS  Google Scholar 

  12. Gao, J.M., Yang, X., Wang, C.Y., and Liu, J.K., Fitoterapia, 2001, vol. 72, no. 8, pp. 858–864.

    Article  PubMed  CAS  Google Scholar 

  13. Yang, J.S., Chen, Y.W., Feng, X.Z., Yu, D.Q., and Liang, X.T., Planta Med., 1989, vol. 50, no. 4, pp. 288–290.

    Article  Google Scholar 

  14. Momose, I., Sekizawa, R., Hosokawa, N., Iinuma, H., Matsui, S., Nakamura, H., Naganawa, H., Hamada, M., and Takeuchi, T., J. Antibiot. (Tokyo), 2000, vol. 53, pp. 137–143.

    CAS  Google Scholar 

  15. Kim, J.H. and Kim, Y.S., Biosci. Biotechnol. Biochem., 1999, vol. 63, no. 12, pp. 2130–2136.

    Article  PubMed  CAS  Google Scholar 

  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    PubMed  CAS  Google Scholar 

  17. McCord, J.M. and Fridovich, I., J. Biol. Chem., 1969, vol. 244, no. 22, pp. 6049–6055.

    PubMed  CAS  Google Scholar 

  18. Chang, W.S., Chang, Y.H., Lu, F.J., and Chiang, H.C., Anticancer Res., 1994, vol. 14, no. 2A, pp. 501–506.

    PubMed  CAS  Google Scholar 

  19. Yoshiyuki, K., Michinori, K., Tadato, T., Shigeru, A., and Hiromichi, O., Chem. Pharm. Bull., 1981, vol. 29, no. 12, pp. 2610–2617.

    Google Scholar 

  20. Wong, S.H., Knight, J.A., Hopfer, S.M., Zaharia, O., Leach, C.N., and Sunderman, F.W., Clin. Chem., 1987, vol. 33, no. 2, pp. 214–220.

    PubMed  CAS  Google Scholar 

  21. Zou, Y.P., Lu, Y.H., and Wei, D.Z., J. Agric. Food Chem., 2004, vol. 52, no. 16, pp. 5032–5039.

    Article  PubMed  CAS  Google Scholar 

  22. Cliffe, S., Fawer, M.S., Maier, G., Takata, K., and Ritter, G., J. Agric. Food Chem., 1994, vol. 42, no. 6, pp. 1824–1848.

    Article  CAS  Google Scholar 

  23. Rouach, H., Ribiere, C., Park, M.K., Saffar, C., and Nordmann, R.R., Bioelectrochem. Bioenerg., 1987, vol. 18, nos. 1–3, pp. 211–217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2007, Vol. 43, No. 4, pp. 495–500.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, L.T., Wu, S.J., Tsai, J.Y. et al. Antioxidant activities of cultured Armillariella mellea . Appl Biochem Microbiol 43, 444–448 (2007). https://doi.org/10.1134/S0003683807040151

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683807040151

Keywords

Navigation