Skip to main content
Log in

Nonlinear dynamics of phase transitions during seawater freezing with false bottom formation

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

This paper concerns mathematical modeling of the processes of false bottom evolution taking into account water freezing in the opposite direction from the cooled boundary with the atmosphere. The model of the crystallization process is based on the two-phase zone theory complicated by the moving boundaries of phase transitions and turbulent flows of fluid in the ocean near the false bottom boundary. Analytical solutions of the nonlinear problem are found (the distributions of the temperature and the salinity, the proportion of the solid fraction, the laws of the motion of the boundaries between the phase transitions, and the heat fluxes) and a comparative analysis of the results with the field data observations is performed. It is shown that the heat flux caused by the growing false bottom makes a significant contribution to the heat exchange processes between the ocean and the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Alexandrov, “Solidification with a Quasiequilibrium Two-Phase Zone,” Dokl. Akad. Nauk 375(2), 172–176 (2000).

    Google Scholar 

  2. D. V. Alexandrov and A. P. Malygin, “Analytical Description of Seawater Crystallization in Ice Fissures and Their Influence on Heat Exchange between the Ocean and the Atmosphere,” Dokl. Earth Sci. 411A(9), 1407–1411 (2006).

    Article  Google Scholar 

  3. D. V. Alexandrov, A. A. Ivanov, and A. P. Malygin, “Self-Similar Solidification with a Two-Phase Zone of the Cooled Wall,” Vestn. Udmurt. Univ., No. 1, 14–25 (2008).

  4. D. V. Alexandrov and I. G. Nizovtseva, “Nonlinear Dynamics of the False Bottom during Seawater Freezing,” Dokl. Earth Sci. 419(2), 359–362 (2008).

    Article  Google Scholar 

  5. V. T. Borisov, V. V. Vinogradov, and A. M. Dukhin, “Applicability of the Theory of Quasi-Equilibrium Two-Phase Zone to Describing the Crystallization of an Ingot,” Izv. AN SSSR, Metally, No. 6, 104–109 (1971).

  6. I. N. Zubov, Arctic Ice (Izd. Glavsevmorputi, Moscow, 1945) [in Russian].

    Google Scholar 

  7. G. P. Ivantsov, “Diffusional Supercooling during Crystallization of a Binary Alloy,” Dokl. Akad. Nauk SSSR 81(2), 179–182 (1951).

    Google Scholar 

  8. L. I. Rubinshtein, Stefan’s Problem (Zvaigzne, Riga, 1967) [in Russian].

    Google Scholar 

  9. D. V. Alexandrov, “Solidification with a Quasiequilibrium Mushy Region: Exact Analytical Solution of Nonlinear Model,” J. Cryst. Growth 222, 816–821 (2001).

    Article  Google Scholar 

  10. D. V. Alexandrov and D. L. Aseev, “Solidification of an Alloy with a Mushy Zone: Thermodiffusion and Temperature-Dependent Diffusivity,” J. Fluid Mech. 527, 57–66 (2005).

    Article  Google Scholar 

  11. D. V. Alexandrov and D. L. Aseev, “Directional Solidification with a Two-Phase Zone: Thermodiffusion and Temperature-Dependent Diffusivity,” Comput. Mater. Sci. 37(1–2), 1–6 (2006).

    Article  Google Scholar 

  12. D. V. Alexandrov and A. P. Malygin, “Self-Similar Solidification of an Alloy from a Cooled Boundary,” Int. J. Heat Mass Transfer 49, 763–769 (2006).

    Article  Google Scholar 

  13. D. V. Alexandrov, A. P. Malygin, and I. V. Alexandrova, “Solidification of Leads: Approximate Solutions of Non-Linear Problem,” Ann. Glaciol. 44, 118–122 (2006).

    Article  Google Scholar 

  14. D. V. Alexandrov, D. L. Aseev, I. G. Nizovtseva, et al., “Nonlinear Dynamics of Directional Solidification with a Mushy Layer. Analytic Solutions of the Problem,” Int. J. Heat Mass Transfer 50, 3616–3623 (2007).

    Article  Google Scholar 

  15. D. V. Alexandrov and I. G. Nizovtseva, “To the Theory of Underwater Ice Evolution, or Nonlinear Dynamics of ‘False Bottoms,’” Int. J. Heat Mass Transfer 51, 5204–5208 (2008).

    Article  Google Scholar 

  16. D. V. Alexandrov, I. G. Nizovtseva, A. P. Malygin, et al., “Unidirectional Solidification of Binary Melts from a Cooled Boundary: Analytical Solutions of a Nonlinear Diffusion-Limited Problem,” J. Phys. Condensed Matter 20, 114105 (2008).

    Article  Google Scholar 

  17. D. L. Aseev and D. V. Alexandrov, “Unidirectional Solidification with a Mushy Layer. The Influence of Weak Convection,” Acta Materialia 54, 2401–2406 (2006).

    Article  Google Scholar 

  18. D. L. Aseev and D. V. Alexandrov, “Directional Solidification of Binary Melts with a Non-Equilibrium Mushy Layer,” Int. J. Heat Mass Transfer 49, 4903–4909 (2006).

    Article  Google Scholar 

  19. G.K. Batchelor, “Transport Properties of Two-Phase Materials with Random Structure,” Ann. Rev. Fluid Mech. 6, 227–255 (1974).

    Article  Google Scholar 

  20. Yu. A. Buyevich and D. V. Alexandrov, Heat Transfer in Dispersions (Begell House, New York, 2005).

    Google Scholar 

  21. Yu. A. Buyevich, D. V. Alexandrov, and V. V. Mansurov, Macrokinetics of Crystallization (Begell House, New York, 2001).

    Google Scholar 

  22. H. Eicken, “Structure of Under-Ice Melt Ponds in the Central Arctic and Their Effect on the Sea-Ice Cover,” Limnol. Oceanogr. 39(3), 682–694 (1994).

    Article  Google Scholar 

  23. H. Eicken, H. R. Krouse, D. Kadko, and D. K. Perovich, “Tracer Studies of Pathways and Rates of Meltwater Transport through Arctic Summer Sea Ice,” J. Geophys. Res. 107(C10), 1–20 (2002).

    Article  Google Scholar 

  24. M. C. Flemings, Solidification Processing (McGrow-Hill Book Company, New York, 1974).

    Google Scholar 

  25. A. C. Fowler, “The Formation of Freckles in Binary Alloys,” IMA J. Appl. Maths. 35, 159–174 (1985).

    Article  Google Scholar 

  26. R. Gradinger, “Occurrence of an Algal Bloom Under Arctic Pack Ice,” Mar. Ecol.: Proc. Ser. 131, 301–305 (1996).

    Article  Google Scholar 

  27. A. N. Hanson, “Studies of the Mass Budget of Arctic Pack-Ice Floes,” J. Glaciol. 5, 701–709 (1965).

    Google Scholar 

  28. R. N. Hills, D. E. Loper, and P. H. Roberts, “A Thermodynamically Consistent Model of a Mushy Zone,” Q. J. Appl. Math. 36, 505–539 (1983).

    Article  Google Scholar 

  29. H. E. Huppert and M. G. Worster, “Dynamic Solidification of a Binary Melt,” Nature 314, 703–707 (1985).

    Article  Google Scholar 

  30. M. O. Jeffries, K. Schwartz, K. Morris, et al., “Evidence for Platelet Ice Accretion in Arctic Sea Ice Development,” J. Geophys. Res. 100(C6), 10905–10914 (1995).

    Article  Google Scholar 

  31. R. C. Kerr, A. W. Woods, M. G. Worster, and H. E. Huppert, “Solidification of An Alloy Cooled from Above. Part 1. Equilibrium Growth,” J. Fluid Mech. 216, 323–342 (1990).

    Article  Google Scholar 

  32. S. Martin and P. Kauffman, “The Evolution of Under-Ice Melt Ponds, or Double Diffusion at the Freezing Point,” J. Fluid Mech. 64(3), 507–527 (1974).

    Article  Google Scholar 

  33. M. G. McPhee, The Geophysics of Sea Ice, Ed. by N. Untersteiner (Plenum, New York, 1986), pp. 133–141.

    Google Scholar 

  34. M. G. McPhee, G. A. Maykut, and J. H. Morison, “Dynamics and Thermodynamics of the Ice/Upper Ocean System in the Marginal Ice Zone of the Greenland Sea,” J. Geophys. Res. 92(C7), 7017–7031 (1987).

    Article  Google Scholar 

  35. J. Morison, M. McPhee, R. Muench, et al., “The LeadEx Group. The LeadEx Experiment,” Eos. Trans. AGU 74, 393–397 (1993).

    Google Scholar 

  36. F. Nansen, Farthest North, New York: Harper Brothers, 235 (1897).

    Google Scholar 

  37. D. Notz, M. G. McPhee, M. G. Worster, et al., “Impact of Underwater-Ice Evolution on Arctic Summer Sea Ice,” J. Geophys. Res. 108(C7), 3223 (2003).

    Article  Google Scholar 

  38. P. R. Owen and W. R. Thomson, “Heat Transfer across Rough Surfaces,” J. Fluid Mech. 15, 321–334 (1963).

    Article  Google Scholar 

  39. J. P. Peixoto and A. M. Oort, Physics of Climate (American Institute of Physics, New York, 1992).

    Google Scholar 

  40. D. K. Perovich and G. A. Maykut, “Solar Heating of a Stratified Ocean in the Presence of a Static Ice Cover,” J. Geophys. Res. 95(C10), 18233–18245 (1990).

    Article  Google Scholar 

  41. D. K. Perovich, E. L. Andreas, J. A. Curry, et al., “Year on Ice Gives Climate Insights,” EOS Trans. AGU 80, 481, 485–486 (1999).

    Article  Google Scholar 

  42. R. S. Pritchard, Sea Ice Processes and Models (Wash.: Univ. of Wash. Press, Seattle, 1980).

    Google Scholar 

  43. E. Scheil, “Bemerkungen zur Schichtkiistallbildung,” Zeichrift fur Metallkunde 34, 70–72 (1942).

    Google Scholar 

  44. J. Stefan, “Uber Einige Probleme der Theorie der Warmeleitung,” Sitzungsberichte de Mathematisch-Naturawissenschaftlichen Classe der Kaiserlichen, Akademie der Wissenschaften 98(2a), 473–484 (1889).

    Google Scholar 

  45. J. Stefan, “Uber die Theorie der Eisbildung, Insbesondere uber die Eisbildung im Polarmeere,” Sitzungsberichte de Mathematisch-Naturawissenschaftlichen Classe der Kaiserlichen, Akademie der Wissenschaften 98(2a), 965–983 (1889).

    Google Scholar 

  46. N. Unterstainer and F. I. Badgley, Preliminary Results of Thermal Budget Studies on Arctic Pack Ice during Summer and Autumn. Arctic Sea Ice (Nat. Acad. Sci., Nat. Res. Counc. Publ, Washington, DC, 1958), pp. 85–92.

    Google Scholar 

  47. P. Wadhams, “The Underside of Arctic Sea Ice Imaged by Sidescan Sonar,” Nature 333, 161–164 (1988).

    Article  Google Scholar 

  48. P. Wadhams and S. Martin, “Processes Determining the Bottom Topography of Multiyear Arctic Sea Ice,” in Sea Ice Properties and Processes, Ed. by W. F. Weeks and S. F. Ackley (Cold Regions Res. and Eng. Lab., Hanover, 1990), pp. 136–141.

    Google Scholar 

  49. J. S. Wettlaufer, M. G. Worster, and H. E. Huppert, “Solidification of Leads: Theory, Experiment, and Field Observations,” J. Geophys. Res. 105(C1), 1123–1134 (2000).

    Article  Google Scholar 

  50. M. G. Worster, “Solidification of an Alloy from a Cooled Boundary,” J. Fluid Mech. 167, 481–501 (1986).

    Article  Google Scholar 

  51. A. M. Yaglom and B. A. Kader, “Heat and Mass Transfer between a Rough Wall and Turbulent Flow at High Reynolds and Peclet Numbers,” J. Fluid Mech. 62, 601–623 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Alexandrov.

Additional information

Original Russian Text © D.V. Alexandrov, A.P. Malygin, 2011, published in Okeanologiya, 2011, Vol. 51, No. 6, pp. 1000–1008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, D.V., Malygin, A.P. Nonlinear dynamics of phase transitions during seawater freezing with false bottom formation. Oceanology 51, 940–948 (2011). https://doi.org/10.1134/S0001437011060014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437011060014

Keywords

Navigation