Skip to main content
Log in

Modeling an Urban Heat Island during Extreme Frost in Moscow in January 2017

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

Using the example of an analysis of an extreme lowering of temperature in Moscow in January 2017, the horizontal and vertical extent of the urban heat island against the background of a strong stable stratification of the atmospheric boundary layer is studied. The possibilities of measuring and monitoring the vertical structure of the atmosphere using ground-based remote sensing are investigated. The capabilities of the mesoscale model WRF, adapted for a detailed description of mixing processes in the atmospheric boundary layer, in reproducing the spatial dynamics of the temperature anomaly are demonstrated. The numerical estimates of the amplitude and vertical extent of the urban heat island are compared with the measurement accuracy and the total errors of the numerical predictions. A comparison of measurement data and numerical simulation results on the WRF model, using the example of a winter urban heat island in January 2017, showed that mesoscale synoptic models so far only capture the main features of the urban heat island. However, deviations between model and observed temperature fields can reach 5°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. Y. Han, J. J. Baik, and H. Lee, “Urban impacts on precipitation,” Asia-Pacific J. Atmos. Sci 50 (1), 17–30 (2014).

    Google Scholar 

  2. J. Hidalgo, G. Pigeon, and V. Masson, “Urban-breeze circulation during the CAPITOUL experiment: Observational data analysis approach,” Meteorol. Atmos. Phys. 102 (3–4), 223–241 (2008).

    Article  Google Scholar 

  3. A. Lemonsu and V. Masson, “Simulation of a summer urban breeze over Paris,” Boundary-Layer Meteorol. 104 (3), 463–490 (2002).

    Article  Google Scholar 

  4. J. M. Shepherd, “A review of current investigations of urban-induced rainfall and recommendations for the future,” Earth Interact. 9 (12), 1–27 (2005).

    Article  Google Scholar 

  5. M. A. Lokoshchenko and I. A. Korneva, “Underground urban heat island below Moscow city,” Urban Clim. 13, 1–13 (2015).

    Article  Google Scholar 

  6. S. A. Benz, P. Bayer, F. M. Goettsche, F. S. Olesen, and P. Blum, “Linking surface urban heat islands with groundwater temperatures,” Environ. Sci. Technol. 50 (1), 70–78 (2016).

    Article  Google Scholar 

  7. A. J. Elmore, S. M. Guinn, B. J. Minsley, and A. D. Richardson, “Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests,” Global Change Biol. 18 (2), 656–674 (2012).

    Article  Google Scholar 

  8. I. Esau, V. V. Miles, R. Davy, M. W. Miles, and A. Kurchatova, “Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia,” Atmos. Chem. Phys. 16 (15), 9563–9577 (2016).

    Article  Google Scholar 

  9. D. Zhou, S. Zhao, L. Zhang, G. Sun, and Y. Liu, “The footprint of urban heat island effect in China,” Sci. Rep. 5, 2–12 (2015).

    Google Scholar 

  10. M. B. Dillon, M. S. Lamanna, G. W. Schade, A. H. Goldstein, and R. C. Cohen, “Chemical evolution of the Sacramento urban plume: Transport and oxidation,” J. Geophys. Res. 107 (D5), 206 (2002).

    Article  Google Scholar 

  11. T. L. Mote, M. C. Lacke, and J. M. Shepherd, “Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia,” Geophys. Res. Lett. 34 (20), 2–5 (2007).

    Google Scholar 

  12. T. R. Oke, G. Mills, A. Christen, and J. A. Voogt, Urban Climates (Cambridge University Press, Cambridge, 2017).

    Book  Google Scholar 

  13. A. J. Arnfield, “Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol. 23 (1), 1–26 (2003).

    Article  Google Scholar 

  14. C. S. B. Grimmond, “Progress in measuring and observing the urban atmosphere,” Theor. Appl. Climatol. 84 (1–3), 3–22 (2006).

    Article  Google Scholar 

  15. A. Tzavali, J. P. Paravantis, G. Mihalakakou, A. Fotiadi, and E. Stigka, “Urban heat island intensity: A literature review,” Fresenius Environ. Bull. 24, 4535–4554 (2015).

    Google Scholar 

  16. T. R. Oke, “The energetic basis of the urban heat island,” Q. J. R. Meteorol. Soc. 108 (455), 1–24 (1982).

    Google Scholar 

  17. T. R. Oke, A. Spronken-Smith, E. Jauregui, and C. S. B. Grimmond, “The energy balance of central Mexico City during the dry season,” Atmos. Environ. 33, 3919–3930 (1999).

    Article  Google Scholar 

  18. T. W. Hawkins, A. J. Brazel, W. L. Stefanov, W. Bigler, and E. M. Saffell, “The role of rural variability in urban heat island determination for Phoenix, Arizona,” J. Appl. Meteorol. 43, 476– 486 (2004).

    Article  Google Scholar 

  19. J. D. Fast, J. C. Torcolini, and R. Redman, “Vertical temperature profiles and the urban heat island measured by a temperature datalogger network in Phoenix, Arizona,” J. Appl. Meteorol. 44, 3–13 (2005).

    Article  Google Scholar 

  20. C. J. G. Morris, I. Simmonds, and N. Plummer, “Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city,” J. Appl. Meteorol. 40, 169–182 (2001).

    Article  Google Scholar 

  21. I. Livada, M. Santamouris, K. Niachou, N. Papanikolaou, and G. Mihalakakou, “Determination of places in the great Athens area where the heat island effect is observed,” Theor. Appl. Climatol. 71, 219–230 (2002).

    Article  Google Scholar 

  22. K. Klysik and K. Fortuniak, “Temporal and spatial characteristics of the urban heat island of Lodz, Poland,” Atmos. Environ. 33, 3885–3895 (1999).

    Article  Google Scholar 

  23. K. M. Hinkel, F. E. Nelson, A. E. Klene, and J. H. Bell, “The urban heat island in winter at Barrow, Alaska,” Int. J. Climatol. 23 (15), 1889–1905 (2003).

    Article  Google Scholar 

  24. N. F. Elansky, O. V. Lavrova, I. I. Mokhov, and A. A. Rakin, “Heat island structure over Russian towns based on mobile laboratory observations,” Dokl. Earth Sci. 443 (1), 420–425 (2012).

    Article  Google Scholar 

  25. A. M. Rizwan, L. Y. Dennis, and L. I. U. Chunho, “A review on the generation, determination and mitigation of urban heat island,” J. Environ. Sci. 20 (1), 120–128 (2008).

    Article  Google Scholar 

  26. G. I. Gorchakov, E. N. Kadygrov, V. E. Kunitsyn, V. I. Zakharov, E. G. Semutnikova, A. V. Karpov, G. A. Kurbatov, E. A. Miller, and S. I. Sitanskii, “The Moscow heat island in the blocking anticyclone during summer 2010,” Dokl. Earth Sci. 456 (2), 736–740 (2014).

    Article  Google Scholar 

  27. B. A. Revich, “Heat waves, atmospheric air quality and the mortality of the population of the European part of Russia in summer 2010: Preliminary assessment results,” Ekol. Chel., No. 7, 3–9 (2011).

  28. V. V. Vinogradova, “Heat waves in the European Russia at the beginning of the 21st century,” Izv. Ross. Akad. Nauk: Ser. Geogr., No. 1, 47–55 (2014).

  29. M. I. Varentsov, P. I. Konstantinov, T. E. Samsonov, and I. A. Repina, “Investigation of the urban heat island phenomenon during the polar night with experimental measurements and remote sensing for Norilsk city,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 11 (4), 329–337 (2014).

    Google Scholar 

  30. K. M. Hinkel and F. E. Nelson, “Anthropogenic heat island at Barrow, Alaska, during winter: 2001–2005,” J. Geophys. Res.: Atmos. 112 (6), 2001–2005 (2007).

    Article  Google Scholar 

  31. N. Magee, J. Curtis, and G. Wendler, “The urban heat island effect at Fairbanks, Alaska,” Theor. Appl. Climatol. 64 (1–2), 39–47 (1999).

    Article  Google Scholar 

  32. P. I. Konstantinov, M. Yu. Grishchenko, and M. I. Varentsov, “Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast),” Izv., Atmos. Ocean. Phys. 51 (9), 992–998 (2015).

    Article  Google Scholar 

  33. P. Konstantinov, M. Varentsov, and I. Esau, “A high density urban temperature network deployed in several cities of Eurasian Arctic,” Environ. Res. Lett. 13 (7) (2018).

    Article  Google Scholar 

  34. M. Varentsov, P. Konstantinov, A. Baklanov, I. Esau, V. Miles V., and R. Davy, “Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city,” Atmos. Chem. Phys. 18, 17573–17587 (2018).

    Article  Google Scholar 

  35. T. Nygård, T. Valkonen, and T. Vihma, “Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings,” Atmos. Chem. Phys. 14 (4), 1959–1971 (2014).

    Article  Google Scholar 

  36. C. Wetzel and B. Brümmer, “An Arctic inversion climatology based on the European Centre Reanalysis ERA-40,” Meteorol. Z. 20 (6), 589–600 (2011).

    Article  Google Scholar 

  37. E. Atlaskin and T. Vihma, “Evaluation of NWP Results for wintertime nocturnal boundary-layer temperatures over Europe and Finland,” Q. J. R. Meteorol. Soc. 138 (667), 1440–1451 (2012).

    Article  Google Scholar 

  38. W. Anderson, Q. Li, and E. Bou-Zeid, “Numerical simulation of flow over urban-like topographies and evaluation of turbulence temporal attributes,” J. Turbul. 16 (9), 809–831 (2015).

    Article  Google Scholar 

  39. J. Sadique, X. I. A. Yang, C. Meneveau, and R. Mittal, “Aerodynamic properties of rough surfaces with high aspect-ratio roughness elements: Effect of aspect ratio and arrangements,” Boundary Layer Meteorol. 163 (2), 203–224 (2017).

    Article  Google Scholar 

  40. X. X. Li, R. Britter, and L. K. Norford, “Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation,” Atmos. Environ. 144, 47–59 (2016).

    Article  Google Scholar 

  41. A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over an urban surface: Spectra and scales and parameterization of temperature and wind-velocity profiles,” Izv., Atmos. Ocean. Phys. 50 (4), 356–368 (2014).

    Article  Google Scholar 

  42. A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over flat and urban surfaces,” Izv., Atmos. Ocean. Phys. 50 (3), 236–246 (2014).

    Article  Google Scholar 

  43. M. Varentsov, H. Wouters, V. Platonov, and P. Konstantinov, “Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Moscow, Russia,” Atmosphere (Basel) 9 (2), 50 (2018).

    Article  Google Scholar 

  44. K. Trusilova, S. Schubert, H. Wouters, B. Früh, S. Grossman-Clarke, M. Demuzere, and P. Becker, “The urban land use in the COSMO-CLM model: a comparison of three parameterizations for Berlin,” Meteorol. Z. 25 (2), 231–244 (2016).

    Article  Google Scholar 

  45. F. Salamanca, A. Martilli, M. Tewari, and F. Chen, “A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF,” J. Appl. Meteorol. Climatol. 50 (5), 1107–1128 (2011).

    Article  Google Scholar 

  46. A. Baklanov, P. G. Mestayer, A. Clappier, S. Zilitinkevich, S. Joffre, A. Mahura, and N. W. Nielsen, “Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description,” Atmos. Chem. Phys. 8 (3), 523–543 (2008).

    Article  Google Scholar 

  47. Meteorological temperature profiler MTP-5. http://attex.net/RU/mtp5.php.

  48. V. P. Yushkov, “Remote sounding and mesoscale synoptic models in studying the urban boundary layer,” Atmos. Oceanic Opt. 30 (5), 462–474 (2017).

    Article  Google Scholar 

  49. E. N. Kadygrov, I. N. Kuznetsova, and G. S. Golitsyn, “Heat island in the boundary atmospheric layer over a large city: New results based on remote sensing data,” Dokl. Earth Sci. 385 (6), 688–694 (2002).

    Google Scholar 

  50. I. N. Kuznetsova, E. N. Kadygrov, E. A. Miller, and M. I. Nakhaev, “Characteristics of the lowest 600 m atmospheric layer temperature on the basis of MTP-5 profiler data,” Opt. Atmos. Okeana. 25 (10), 877–883 (2012).

    Google Scholar 

  51. I. N. Ezau, T. Wolf, E. A. Miller, I. A. Repina, Yu. I. Troitskaya, and S. S. Zilitinkevich, “The analysis of results of remote sensing monitoring of the temperature profile in lower atmosphere in Bergen (Norway),” Russ. Meteorol. Hydrol. 38 (10), 715–722 (2013).

    Article  Google Scholar 

  52. A. V. Troitskii, “Remote determination of atmospheric temperature from spectral radiometric measurements in the λ = 5-mm line,” Radiophys. Quantum Electron. 29 (8), 670–678 (1986).

    Article  Google Scholar 

  53. The Weather Research and Forecasting Model. http://www.wrf-model.org.

  54. J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang, “The Weather Research and Forecast Model: Software architecture and performance,” in Use of High Performance Computing in Meteorology, Proceedings of the Eleventh ECMWF Workshop, Reading, UK, 25–29 October 2004, Ed. by W.  Zwieflhofer and G. Mozdzynski (World Scientific, 2005), pp. 156–168.

  55. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, A description of the advanced research WRF Version 3, NCAR Technical Note, Boulder, Colorado: National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Division, 2008.

    Google Scholar 

  56. Global Forecast System. http://www.emc.ncep.noaa. gov/GFS/doc.php.

  57. G. Thompson, R. M. Rasmussen, and K. Manning, “Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis,” Mon. Weather Rev. 132 (2), 519–542 (2004).

    Article  Google Scholar 

  58. M. J. Iacono, J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, “Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models,” J. Geophys. Res.: Atmos. 113 (D13) (2008).

  59. M. Tewari, F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, “Implementation and verification of the unified NOAH land surface model in the WRF model,” in 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction (2004), Vol. 1115, pp. 11–15.

  60. G. A. Grell and D. Dévényi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophys. Res. Lett. 29 (14), 38-1–38-4 (2002).

    Article  Google Scholar 

  61. P. Bougeault and P. Lacarrere, “Parameterization of orography-induced turbulence in a mesobeta-scale model,” Mon. Weather Rev. 117 (8), 1872–1890 (1989).

    Article  Google Scholar 

  62. F. Chen, H. Kusaka, R. Bornstein, J. Ching, C. S. B. Grimmond, S. Grossman-Clarke, T. Loridan, K. W. Manning, A. Martilli, S. Miao, and D. Sailor, “The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems,” Int. J. Climatol. 31 (2), 273–288 (2011).

    Article  Google Scholar 

  63. I. D. Stewart and T. R. Oke, “Local climate zones for urban temperature studies,” Bull. Am. Meteorol. Soc. 93 (12), 1879–1900 (2012).

    Article  Google Scholar 

  64. B. P. Shekhtman, The Moscow Climate: Specific Features of Climate in a Megacity) (Gidrometeoizdat, Moscow, 1969) [in Russian].

  65. S. Argentini, G. Mastrantonio, and F. Lena, “Case studies of the wintertime convective boundary-layer structure in the urban area of Milan, Italy,” Boundary Layer Meteorol. 93 (2), 253–267 (1999).

    Article  Google Scholar 

  66. J. J. Baik, Y. H. Kim, and H. Y. Chun, “Dry and moist convection forced by an urban heat island,” J. Appl. Meteorol. 40 (8), 1462–1475 (2001).

    Article  Google Scholar 

  67. M. M. Smirnova, K. G. Rubinshtein, and V. P. Yushkov, “Evaluation of atmospheric boundary layer characteristics simulated by the regional model,” Russ. Meteorol. Hydrol. 36 (12), 777–785 (2011).

    Article  Google Scholar 

  68. V. P. Yushkov, M. A. Kallistratova, R. D. Kouznetsov, G. A. Kurbatov, and V. F. Kramar, “Experience in measuring the wind-velocity profile in an urban environment with a Doppler sodar,” Izv., Atmos. Ocean. Phys. 43 (2), 168–180 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to D.D. Kuznetsov and V.S. Lyulyukin for providing the observational data.

Funding

This work was supported by the Russian Foundation for Basic Research, projects nos. 18-08-00074, 19-05-00028 and 18-05-60126.

The work of M. Varentsov on the analysis of the spatial structure of the heat island according to surface observations was supported by the Russian Science Foundation, project no. 17-77-20070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Repina.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkov, V.P., Kurbatova, M.M., Varentsov, M.I. et al. Modeling an Urban Heat Island during Extreme Frost in Moscow in January 2017. Izv. Atmos. Ocean. Phys. 55, 389–406 (2019). https://doi.org/10.1134/S0001433819050128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819050128

Keywords:

Navigation