Skip to main content
Log in

Results of Russian investigations into the middle atmosphere (2011–2014)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of Russian investigations into the Earth’s middle atmosphere that were published in the period of 2011–2014 are presented. The survey is prepared as part of the National Report on Meteorology and Atmospheric Sciences for the XXVI General Assembly of the International Union on Geodesy and Geophysics (IUGG) that was held from June 22 to July 2, 2015, in Prague, Czech Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Bekoryukov, V. N. Glazkov, and V. V. Fedorov, “Analysis of time series of global mean values of thermodynamic and circulation parameters of the atmosphere and concentrations of ozone and water vapor,” Izv., Atmos. Ocean. Phys. 47 (1), 67–76 (2011).

    Article  Google Scholar 

  2. O. A. Bukin, S. A. Nguyen, A. N. Pavlov, et al., “Effect that jet streams have on the vertical ozone distribution and characteristics of tropopause inversion layer in the Far East region,” Izv., Atmos. Ocean. Phys. 47 (5), 610–618 (2011).

    Article  Google Scholar 

  3. A. N. Gruzdev and A. S. Elokhov, “New results of the validation of measurement data on NON2 content with the help of OMI instrument based on measurement data obtained at the Zvenigorod station,” Issled. Zemli Kosmosa, No. 1, 16–28 (2013).

    Google Scholar 

  4. D. V. Ionov, M. A. Kshevetskaya, Yu. M. Timofeev, and A. V. Poberovskii, “Stratospheric NON2 content according to data from ground-based measurements of solar IR radiation,” Izv., Atmos. Ocean. Phys. 49 (5), 519–529 (2013).

    Article  Google Scholar 

  5. G. A. Gavrilyeva, P. P. Ammosov, and I. I. Koltovskoi, “Comparison of ground-based and satellite measurements of atmospheric temperature in the mesopause region in high-latitude eastern Siberia,” Geomagn. Aeron. (Engl. Transl.) 51 (4), 557–563 (2011).

    Article  Google Scholar 

  6. V. N. Marichev and D. A. Bochkovskii, “Lidar measurements of air density in the middle atmosphere. Part 2. Modeling of the potential sounding capabilities in the UV spectrum,” Opt. Atmos. Okeana 26 (8), 701–704 (2013).

    Google Scholar 

  7. J.-P. Pommereau, F. Goutail, F. Lefèvre, et al., “Why unprecedented ozone loss in the Arctic in 2011? Is it related to climate change?,” Atmos. Chem. Phys. 13 (10), 5299–5308 (2013). http://www.atmos-chem-phys. net/13/5299/2013/ 10.5194/acp-13-5299-2013.

    Article  Google Scholar 

  8. V. Yu. Ageeva, M. V. Grishaev, A. N. Gruzdev, et al., “Anomalies of stratospheric NON2 content over Siberia related to the Arctic ozone hole 2011,” Opt. Atmos. Okeana 27 (1), 40–45 (2014).

    Google Scholar 

  9. A. M. Zvyagintsev, G. I. Kuznetsov, and I. N. Kuznetsova, “Ozone anomalies in spring over Russia,” Russ. Meteorol. Hydrol. 38 (5), 297–303 (2013).

    Article  Google Scholar 

  10. V. V. Zuev, N. E. Zueva, and E. S. Savel’eva, “Specificity of formation of the Antarctic and Arctic ozone anomalies,” Opt. Atmos. Okeana 27 (5), 407–412 (2014).

    Google Scholar 

  11. O. E. Bazhenov, “Assessing the effects of humidity and temperature in the stratosphere on the occurrence of ozone anomaly in spring of 2011 in Arctic and over northern territory of Russia,” Opt. Atmos. Okeana 25 (7), 589–593 (2012).

    Google Scholar 

  12. V. V. Zuev and N. E. Zueva, “Volcanogenic disturbances of the stratosphere as the principle regulator of the long-term behavior of the ozonosphere from 1979 to 2008,” Opt. Atmos. Okeana 24 (1), 30–34 (2011).

    Article  Google Scholar 

  13. V. V. Bychkov, A. S. Perezhogin, B. M. Shevtsov, et al., “Seasonal features of the appearance of aerosol scattering in the stratosphere and mesosphere of Kamchatka from the results of lidar observations in 2007–2009,” Izv., Atmos. Ocean. Phys. 47 (5), 603–609 (2011).

    Article  Google Scholar 

  14. V. N. Marichev and I. V. Samokhvalov, “Lidar observations of aerosol volcanic layers in stratosphere of Western Siberia in 2008–2010,” Opt. Atmos. Okeana 24 (3), 224–231 (2011).

    Google Scholar 

  15. A. A. Cheremisin, V. N. Marichev, and P. V. Novikov, “Transport of polar stratospheric clouds from the arctic to Tomsk in January 2010,” Atmos. Oceanic Opt. 26 (6), 492–498 (2013).

    Article  Google Scholar 

  16. S. I. Dolgii, V. D. Burlakov, A. P. Makeev, et al., “Aerosol disturbances in the stratosphere after eruption of Grímsvötn volcano (Iceland, May 2011) according to data of observations at stations of CIS lidar network CIS-LiNet in Minsk, Tomsk, and Vladivostok,” Opt. Atmos. Okeana 26 (7), 547–552 (2013).

    Google Scholar 

  17. V. N. Marichev, “Investigation of variability of the background aerosol vertical structure above Tomsk based on lidar observations in 2010–2011,” Opt. Atmos. Okeana 25 (11), 976–984 (2012).

    Google Scholar 

  18. V. N. Marichev, G. G. Matvienko, A. A. Lisenko, et al., “First results of an integrated experiment on sounding the middle atmosphere in optical and millimeter wavelength ranges (over Tomsk),” Atmos. Oceanic Opt. 25 (3), 222–226 (2013).

    Article  Google Scholar 

  19. V. A. Korshunov and D. S. Zubachev, “Determination of stratospheric aerosol parameters from two-wavelength lidar sensing data,” Izv., Atmos. Ocean. Phys. 49 (2), 176–186 (2013).

    Article  Google Scholar 

  20. I. I. Mokhov and A. I. Semenov, “Nonlinear temperature changes in the atmospheric mesopause region of the atmosphere against the background of global climate changes, 1960–2012,” Dokl. Earth Sci. 456 (2), 741–744 (2014).

    Article  Google Scholar 

  21. N. M. Gavrilov and A. V. Koval’, “Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics,” Izv., Atmos. Ocean. Phys. 49 (3), 244–251 (2013).

    Article  Google Scholar 

  22. N. M. Gavrilov, A. V. Koval’, A. I. Pogorel’tsev, and E. N. Savenkova, “Numerical simulation of the response of general circulation of the middle atmosphere to spatial inhomogeneities of orographic waves,” Izv., Atmos. Ocean. Phys. 49 (4), 367–374 (2013).

    Article  Google Scholar 

  23. N. M. Gavrilov, A. V. Koval’, A. I. Pogorel’tsev, and E. N. Savenkova, “Numerical simulation of the influence of stationary mesoscale orographic waves on the meridional circulation and ozone fluxes in the middle atmosphere,” Geomagn. Aeron. (Engl. Transl.) 54 (3), 381–387 (2014).

    Article  Google Scholar 

  24. N. M. Gavrilov and S. P. Kshevetskii, “Numerical modeling of the propagation of nonlinear acousticgravity waves in the middle and upper atmosphere,” Izv., Atmos. Ocean. Phys. 50 (1), 66–72 (2014).

    Article  Google Scholar 

  25. A. I. Semenov, N. N. Shefov, and I. V. Medvedeva, “Orographic disturbances in the upper atmosphere,” J. Atmos. Sol.-Terr. Phys. 90–91, 124–133 (2012).

    Article  Google Scholar 

  26. Yu. I. Portnyagin, E. G. Merzlyakov, T. V. Solov’eva, et al., “Height–latitude structure of the vertical component of the migrating semidiurnal tide in the upper mesosphere and lower thermosphere region (80–100 km),” Izv., Atmos. Ocean. Phys. 47 (1), 108–118 (2011).

    Article  Google Scholar 

  27. E. G. Merzlyakov, Yu. I. Portnyagin, T. V. Solov’eva, et al., “Altitude–latitude structure of the vertical wind component of the migrating diurnal tide in the range of heights from 80 to 100 km,” Izv., Atmos. Ocean. Phys. 48 (2), 174–184 (2012).

    Article  Google Scholar 

  28. V. I. Perminov and N. N. Pertsev, “The behavior of emissions and temperature of the mesopause during stratospheric warmings according to observations at midlatitudes,” Geomagn. Aeron. (Engl. Transl.) 53 (6), 780–784 (2013).

    Article  Google Scholar 

  29. V. I. Kurkin, M. A. Chernigovskaya, V. N. Marichev, et al., “Specific features of the manifestation of winter sudden stratospheric warmings from 2008 to 2010 over Siberia and Far East regions of Russia according to lidar and satellite measurements of temperature,” Soln.–Zemnaya Fiz., No. 17, 166–173 (2011).

    Google Scholar 

  30. A. I. Pogorel’tsev, E. N. Savenkova, and N. N. Pertsev, “Sudden stratospheric warmings: The role of normal atmospheric modes,” Geomagn. Aeron. (Engl. Transl.) 54 (3), 357–372 (2014).

    Article  Google Scholar 

  31. N. N. Pertsev, A. B. Andreev, E. G. Merzlyakov, and V. I. Perminov, “Mesospheric–thermospheric manifestations of stratospheric warmings: Combinaed use of satellite and ground-based measurements,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 10 (1), 93–100 (2013).

    Google Scholar 

  32. V. N. Marichev, “Investigation into features of manifestation of winter stratospheric warming events over Tomsk from the data of lidar temperature measurements in 2010–2011,” Opt. Atmos. Okeana 24 (12), 1041–1046 (2011).

    Google Scholar 

  33. V. N. Marichev, G. G. Matvienko, A. A. Lisenko, et al., “Microwave and optical observations of ozone and temperature of the middle atmosphere during stratospheric warming in Western Siberia,” Atmos. Oceanic Opt. 27 (6), 499–505 (2014).

    Article  Google Scholar 

  34. O. S. Kochetkova, V. I. Mordvinov, and M. A. Rudneva, “Analysis of the factors affecting the occurrence of stratospheric warming,” Opt. Atmos. Okeana 27 (8), 719–727 (2014).

    Google Scholar 

  35. P. N. Vargin and I. V. Medvedeva, “Temperature and dynamical regimes of the northern hemisphere extratropical atmosphere during sudden stratospheric warming in winter 2012–2013,” Izv., Atmos. Ocean. Phys. 51 (1), 12–29 (2015).

    Article  Google Scholar 

  36. I. V. Medvedeva, V. I. Perminov, and A. I. Semenov, “Mesopause temperature variability from hydroxyl emission observations in Eastern Siberia and European Russia,” in Proc. SPIE 8696, Eighteenth International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 86960R (November 27, 2012). doi doi 10.1117/12.200872810.1117/12.2008728

    Google Scholar 

  37. G. R. Khairullina and N. M. Astaf’eva, Quasi-Biennial Oscillations in the Earth’s Atmosphere. A Review: Observations and Formation Mechanisms (IKI RAN, Moscow, 2011) [in Russian].

    Google Scholar 

  38. E. V. Devyatova and V. I. Mordvinov, “Quasi-biennial oscillation of wind in the low-latitude stratosphere and the winter wave activity of the atmosphere in the Northern Hemisphere,” Izv., Atmos. Ocean. Phys. 47 (5), 558–571 (2011).

    Article  Google Scholar 

  39. J. R. Holton and H. Tan, “The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb,” J. Atmos. Sci. 37 (10), 2200–2208 (1980).

    Article  Google Scholar 

  40. I. P. Gabis and O. A. Troshichev, “The quasi-biennial oscillation in the equatorial stratosphere: Seasonal regularity in zonal wind changes, discrete QBO-cycle period and prediction of QBO-cycle duration,” Geomagn. Aeron. (Engl. Transl.) 51 (4), 501–512 (2011).

    Article  Google Scholar 

  41. O. E. Bazhenov, “Studying the quasi-biennial oscillation of total ozone and ozone concentrations at separate altitude levels over the Arctic and Tomsk according to data of TOMS satellite instrumentation,” Atmos. Oceanic Opt. 28 (2), 169–174 (2015).

    Article  Google Scholar 

  42. A. N. Pavlov, S. Yu. Stolyarchuk, K. A. Shmirko, and O. A. Bukin, “Lidar measurements of variability of the vertical ozone distribution caused by the stratospheretroposphere exchange in the Far East Region,” Atmos. Oceanic Opt. 26 (2), 126–134 (2013).

    Article  Google Scholar 

  43. P. N. Antokhin and B. D. Belan, “Control of the dynamics of tropospheric ozone through the stratosphere,” Atmos. Oceanic Opt. 26 (3), 207–213 (2013).

    Article  Google Scholar 

  44. A. I. Semenov and V. Yu. Khomich, “Latitudinal–seasonal model of the temperature response of the middle atmosphere to solar activity,” Opt. Pura Apl. 44 (4), 695–699 (2011).

    Google Scholar 

  45. A. A. Krivolutsky and A. I. Repnev, “Impact of space energetic particles on the Earth’s atmosphere (a review),” Geomagn. Aeron. (Engl. Transl.) 52 (6), 685–716 (2012).

    Article  Google Scholar 

  46. B. Funke, A. Baumgaertner, M. Calist, et al., “Composition changes after the “Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study,” Atmos. Chem. Phys. 11 (17), 9089–9139 (2011). http://www.atmos-chem-phys.net/11/9089/ 2011. doi 10.5194/acp-11-9089-2011

    Article  Google Scholar 

  47. A. A. Krivolutsky, L. A. Cherepanova, M. Vissing, et al., “Three-dimensional numerical modeling of measured temperature, wind, chemical composition of the Earth’s atmosphere, conditioned by solar activity,” Soln.–Zemnaya Fiz., No. 21, 37–45 (2012).

    Google Scholar 

  48. A. A. Krivolutsky and L. A. Cherepanova, “Response of global fields of temperature and tropospheric winds and the middle atmosphere to variations in the solar UV radiation flow during a solar activity cycle in the presence of planetary waves (3d modeling),” Geomagn. Aeron. (Engl. Transl.) 53 (7), 871–875 (2013).

    Article  Google Scholar 

  49. A. N. Gruzdev, “Estimate of the effect of the 11-year solar activity cycle on the ozone content in the stratosphere,” Geomagn. Aeron. (Engl. Transl.) 54 (5), 633–639 (2014).

    Article  Google Scholar 

  50. A. N. Gruzdev, “Estimate of the effects of Pinatubo eruption in stratospheric O3 and NON2 contents taking into account the variations in the solar activity,” Atmos. Oceanic Opt. 27 (5), 403–411 (2014).

    Article  Google Scholar 

  51. K. N. Visheratin, “Relationship between phases of quasi-decadal oscillations of total ozone and the 11-year solar cycle,” Geomagn. Aeron. (Engl. Transl.) 52 (1), 94–102 (2012).

    Article  Google Scholar 

  52. A. A. Kukoleva and A. A. Krivolutsky, “Assessing the efficiency of the formation of NO molecules during the solar proton flare of July 14, 2000 according to satellite data,” Soln.–Zemnaya Fiz., No. 21, 51–57 (2012).

    Google Scholar 

  53. A. A. Kukoleva and A. A. Krivolutsky, “Analysis of variations in the nitrogen oxide content in the polar atmosphere of the northern hemisphere during the solar proton flare of July 14, 2000, based on the UARS satellite data,” Geomagn. Aeron. (Engl. Transl.) 53 (8), 932–936 (2013).

    Article  Google Scholar 

  54. D. V. Kulyamin and V. P. Dymnikov, “Three-dimensional model of thermospheric dynamics,” Geliogeofiz. Issled. 7 (7), 15–42 (2014).

    Google Scholar 

  55. D. V. Kulyamin and V. P. Dymnikov, “Modeling of the general circulation of troposphere–stratosphere–mesosphere taking into account the ionospheric D-layer,” Geliogeofiz. Issled. 10 (10), 5–44 (2014).

    Google Scholar 

  56. A. I. Semenov, N. N. Shefov, E. V. Devyatova, and V. I. Mordvinov, “Emission of the upper atmosphere is a sensitive indicator of solar–terrestrial processes: Summary of results over a period of 60 years,” Geomagn. Aeron. (Engl. Transl.) 51 (4), 429–443 (2011).

    Article  Google Scholar 

  57. A. I. Semenov, N. N. Shefov, I. V. Medvedeva, and A. B. Beletskii, “Features of longitudinal variations in atmospheric temperature at heights of the radiating layer of 557.7-nm emission of atomic oxygen,” Geomagn. Aeron. (Engl. Transl.) 52 (2), 248–253 (2012).

    Article  Google Scholar 

  58. A. I. Semenov, N. N. Shefov, and I. V. Medvedeva, “Longitudinal variations in the hydroxyl emission. 1. Temperatura,” Geomagn. Aeron. (Engl. Transl.) 53 (4), 492–501 (2013).

    Article  Google Scholar 

  59. A. I. Semenov, N. N. Shefov, and I. V. Medvedeva, “ Longitudinal variations in the hydroxyl emission. 2. Height of the emitting layer, vibrational temperature, and intensity,” Geomagn. Aeron. (Engl. Transl.) 54 (3), 373–280 (2014).

    Article  Google Scholar 

  60. A. I. Semenov, N. N. Shefov, and I. V. Medvedeva, “Empirical model of variations in the continuum emission in the upper atmosphere. 1. Intensity,” Geomagn. Aeron. (Engl. Transl.) 54 (4), 488–499 (2014).

    Article  Google Scholar 

  61. A. I. Semenov, N. N. Shefov, and I. V. Medvedeva, “Empirical model of variations in the continuum emission in the upper atmosphere. 2. Infrared components,” Geomagn. Aeron. (Engl. Transl.) 54 (5), 655–665 (2014).

    Article  Google Scholar 

  62. A. I. Semenov, N. N. Shefov, and I. V. Medvedeva, “Empirical model of variations in the continuum emission in the upper atmosphere. 3. Emitting-layer altitude,” Geomagn. Aeron. (Engl. Transl.) 55 (4), 539–546 (2015).

    Article  Google Scholar 

  63. A. I. Semenov and I. V. Medvedeva, “Height distribution of the upper atmosphere continuum infrared emissions,” in Proc. SPIE 9292, 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 92925I (November 25, 2014). doi 10.1117/12.207458810.1117/12.2074588

    Google Scholar 

  64. A. I. Semenov, V. I. Perminov, K. V. Lipatov, and V. Yu. Khomich, “Estimate of seasonal changes in the intensity of the infrared atmospheric system of molecular oxygen,” Geomagn. Aeron. (Engl. Transl.) 51 (3), 415–420 (2011).

    Article  Google Scholar 

  65. K. V. Lipatov and V. I. Perminov, “Empirical model of variations in the emission of the infrared atmospheric system of molecular oxygen: 1. Intensity,” Geomagn. Aeron. (Engl. Transl.) 52 (4), 513–525 (2012).

    Article  Google Scholar 

  66. K. V. Lipatov, “Empirical model of variations in the IR atmospheric system of molecular oxygen: 2. Emitting layer height,” Geomagn. Aeron. (Engl. Transl.) 53 (1), 104–112 (2013).

    Article  Google Scholar 

  67. V. I. Perminov and K. V. Lipatov, “Empirical model of variations in the emission of the infrared atmospheric system of molecular oxygen: 3. Temperature,” Geomagn. Aeron. (Engl. Transl.) 53 (3), 389–396 (2013).

    Article  Google Scholar 

  68. A. I. Semenov, K. V. Lipatov, V. I. Perminov, and N. N. Shefov, “A model of ozone variation in the mesosphere based on measurements of infrared emission of the atmospheric molecular oxygen system,” Dokl. Earth Sci. 449 (1), 362–365 (2013).

    Article  Google Scholar 

  69. V. I. Perminov, A. I. Semenov, I. V. Medvedeva, and Yu. A. Zheleznov, “Variability of mesopause temperature from the hydroxyl airglow observations over midlatitudinal sites, Zvenigorod and Tory, Russia,” Adv. Space Res. 54, 2511–2517 (2014).

    Article  Google Scholar 

  70. V. I. Perminov, A. I. Semenov, I. V. Medvedeva, and N. N. Pertsev, “Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes,” Geomagn. Aeron. (Engl. Transl.) 54 (2), 230–239 (2014).

    Article  Google Scholar 

  71. V. I. Perminov, A. I. Semenov, I. V. Medvedeva, and Yu. A. Zheleznov, “Variability of mesopause temperature from the hydroxyl airglow observations over midlatitudinal sites, Zvenigorod and Tory, Russia,” Adv. Space Res. 54, 2511–2517 (2014). doi 10.1016/j.asr.2014.01.027

    Article  Google Scholar 

  72. Yu. Yu. Kulikov, V. L. Frolov, G. I. Grigor’ev, et al., “Response of mesospheric ozone to the heating of the lower ionosphere by high-power HF radio emission,” Geomagn. Aeron. (Engl. Transl.) 53 (1), 96–103 (2013).

    Article  Google Scholar 

  73. A. A. Krasil’nikov, Yu. Yu. Kulikov, V. G. Ryskin, et al., “A new compact microwave spectroradiometer–ozonometer,” Instrum. Exp. Tech. 54 (1), 118–123 (2011).

    Article  Google Scholar 

  74. V. V. Alpatov, V. I. Badin, I. A. Grebnev, et al., “Effective radius of heating of the lower ionosphere by intense shortwave radiation,” Geomagn. Aeron. (Engl. Transl.) 52 (6), 793–796 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krivolutsky.

Additional information

Original Russian Text © A.A. Krivolutsky, A.A. Kukoleva, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 5, pp. 561–576.

Russian National Report: Meteorology and Atmospheric Sciences 2011–2014 / Eds: Mokhov I.I., Krivolutsky A.A. National Geophysical Committee RAS. M.: MAKS Press, 2015. 270 p.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivolutsky, A.A., Kukoleva, A.A. Results of Russian investigations into the middle atmosphere (2011–2014). Izv. Atmos. Ocean. Phys. 52, 497–511 (2016). https://doi.org/10.1134/S000143381605008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381605008X

Keywords

Navigation