Skip to main content
Log in

Intensification of processes of electrodeposition of metals by use of various modes of pulse electrolysis

  • Physicochemical Principles of Design of Materials and Technologies
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Investigations of the influence of various modes of electrolysis on the speed of processes of electrodeposition of metals are conducted. On the basis of theoretical investigations, the main potential opportunities for process intensification when using an pulsed current for processes whose speed is defined by mass transfer and charge transfer are defined. Weakly toxic electrolytes based on lactic acid are developed for formation of electroplatings by nickel, zinc, and tin; optimum parameters of stationary, galvanostatic, and potentsiostatic pulse electrolysis are determined. Investigations of kinetic regularities of the process of electrodeposition of metals are conducted, and the limiting stages of processes are defined. It is established that the greatest impact on the speed of electrodeposition of metals is exerted by potentiostatic pulse electrolysis. It is revealed that, to a greater degree, the intensification when using a pulsed current is characteristic of processes whose speed is limited by mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anur’ev, V.I., Spravochnik konstruktora-mashinostroitelya (Handbook of Machine Engineer), Zhestkova, I.N., Ed., Moscow: Mashinostroenie, 2001, vol. 1.

  2. Kudryavtsev, N.T., Elektrokhimicheskie pokrytiya metallami (Electrochemical Metal Coatings), Moscow: Khimiya, 1979.

    Google Scholar 

  3. Gamburg, Yu.D., Elektrokhimicheskaya kristallizatsiya metallov i splavov (Electrochemical Crystallization of Metals and Alloys), Moscow: Yanus-K, 1997.

    Google Scholar 

  4. Kochegarov, I.I., Khanin, I.V., Lysenko, A.V., Yurkov, N.K., and Almametov, B.V., Algorithm of revealing latent PCB defects by optical control, Izv. Vyssh. Uchebn. Zaved., Povolzhsk. Reg., Tekh. Nauki, 2013, no. 3 (27), pp. 105–114.

    Google Scholar 

  5. Damaskin, B.B. and Petrii, O.A., Vvedenie v elektrokhimicheskuyu kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vysshaya Shkola, 1985.

    Google Scholar 

  6. Polukarov, Yu.M. and Grinina, V.V., Electrodeposition of metals using the periodic currents and single pulses, Itogi Nauki Tekh.: Elektrokhim., 1985, vol. 22, pp. 3–62.

    Google Scholar 

  7. Kostin, N.A., Kublanovskii, V.S., and Zabludovskii, V.A., Impul’snyi elektroliz (Pulsed Electrolysis), Kiev: Naukova Dumka, 1989.

    Google Scholar 

  8. Sedoikin, A.A. and Tsupak, T.E., The role of migration mass transfer in the electrodeposition of nickel from sulfatechloride and chloride solutions containing succinic acid, Russ. J. Electrochem., 2008, vol. 44, no. 3, pp. 319–326.

    Article  CAS  Google Scholar 

  9. Druchenko, V.A. and Khizhkovaya, V.A., Electrolyte for a deposition of a gloss nickel coatings in the ultrasonic field, in Primenenie ul’trazvuka v mashinostroenii (Application of Ultrasound in Mechanical Engineering), Minsk: Inst. Nauchno-Tekh. Inf., BelSSR, 1964, pp. 151–154.

    Google Scholar 

  10. Vanteev, A.N., Vinogradov, S.N., Mal’tseva, G.N., and Shatalaeva, O.A., Influence of the cathode vibration and electromagnetic field on technological and kinetic parameters of electrodeposition of Zn–Ni alloy, Mater. II Vseros. nauchno-tekh. konf. “Zashchitnye pokrytiya v mashinostroenii i priborostroenii” (Proc. 2nd All- Russ. Sci.-Tech. Conf. “Protective Coatings in Machine Engineering and Instrumentation”), Penza: Privolzhsk. Dom Znanii, 2005, pp. 11—13

  11. Vinogradov, S.N. and Naumov, L.V., Elektroosazhdenie splava kobal’t-nikel’ pri vibratsii i v elektromagnitnom pole (Electrodeposition of Cobalt-Nickel Alloy at the Cathode Vibration and in an Electromagnetic Field), Available from VINITI, 2006, no. 756-V2006.

    Google Scholar 

  12. Gnusin, N.P. and Kovarskii, N.Ya., Sherokhovatost’ elektroosazhdennykh poverkhnostei (Roughness of the Electrodeposited Surfaces), Moscow: Nauka, 1970.

    Google Scholar 

  13. Krivtsov, A.K. and Khamaev, V.A., An electrolysis at a periodic current, Tr. Ivanovsk. Khim.-Tekhnol. Inst., 1968, no. 10, pp. 108–114.

    Google Scholar 

  14. Vetter, K.J., Electrochemical Kinetics: Theoretical and Experimental Aspects, New York: Academic, 1967.

    Google Scholar 

  15. Rotinyan, A.L., Tikhonov, K.I., and Shoshina, I.A., Teoreticheskaya elektrokhimiya (The Theory of Electrochemistry), Rotinyan, A.L., Ed., Leningrad: Khimiya, 1981.

  16. Berezin, N.B., Gudin, N.V., and Sagdeev, K.A., Electrodeposition of nickel-phosphorous alloy from phosphate oxide electrolytes by pulse current, Gal’vanotekh. Obrab. Poverkhn., 1994, vol. 3, no. 4, pp. 18–21.

    CAS  Google Scholar 

  17. Berezin, N.B., Sagdeev, K.A., and Mezhevich, Zh.V., Kinetic parameters of electrochemical reaction in the conditions of stationary and pulse polarization of the cathode, Butlerovskie Soobshch., 2004, vol. 5, no. 1, pp. 44–47.

    Google Scholar 

  18. Perelygin, Yu.P., Kireev, S.Yu., Kireeva, S.N., Lipovskii, V.V., and Yagnichenko, N.V., RF Patent 2354756, Byull. Izobret., 2009, no. 13.

  19. Kireev, S.Yu., Perelygin, Yu.P., Yagnichenko, N.V., Kireeva, T.N., and Kireev, Yu.I., RF Patent 2400570, Byull. Izobret., 2010, no. 27.

  20. Kireev, S.Yu., Perelygin, Yu.P., and Kireev, A.Yu., RF Patent 2341592, Byull. Izobret., 2008, no. 35.

  21. Kireev, S.Yu. and Perelygin, Yu.P., Lactic acid as a low toxic additive in electrolytes for production of metals and alloy coatings, Mir Gal’vaniki, 2009, no. 3 (10), pp. 34–36.

  22. Perelygin, Yu.P., Kireev, S.Yu., and Kireev, A.Yu., Electrodeposition of tin from acidic lactate electrolyte on constant electric current, Izv. Vyssh. Uchebn. Zaved., Povolzhsk. Reg., Tekh. Nauki, 2007, no. 6, pp. 131–134.

    Google Scholar 

  23. Kireev, S.Yu., Perelygin, Yu.P., and Yagnichenko, N.V., Electrodeposition of zinc from acidic lactate electrolyte, Gal’vanotekh. Obrab. Poverkhn., 2011, no. 3, pp. 30–32.

    Google Scholar 

  24. Perelygin, Yu.P., Kireev, S.Yu., Lipovskii, V.V., and Yagnichenko, N.V., Electrodeposition of nickel from the acidic sulphate electrolytes containing lactic acid, Gal’vanotekh. Obrab. Poverkhn., 2008, no. 2, pp. 14–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Kireev.

Additional information

Original Russian Text © S.Yu. Kireev, 2016, published in Perspektivnye Materialy, 2016, No. 11, pp. 5–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kireev, S.Y. Intensification of processes of electrodeposition of metals by use of various modes of pulse electrolysis. Inorg. Mater. Appl. Res. 8, 203–210 (2017). https://doi.org/10.1134/S2075113317020095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317020095

Keywords

Navigation