Skip to main content
Log in

Calcium pyrophosphate powder for production of bioceramics synthesized from pyrophosphoric acid and calcium acetate

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Hydrated amorphous calcium pyrophosphate powder was synthesized from an aqueous solution containing pyrophosphoric acid and calcium acetate with the addition of an aqueous solution of ammonia. A distinctive feature of the proposed synthesis consisted in the use of pyrophosphoric acid synthesized by treatment of a sodium pyrophosphate solution with ion exchange resin (H+ form). The phase composition of ceramic fabricated from the powder after the calcination at 600–1000°C was represented by β-Ca2P2O7. The synthesized powder can be recommended for the fabrication of porous biocompatible resorbable ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medicine, Russ. Chem. Rev., 2010, vol. 79, no. 1, pp. 13–29.

    Article  CAS  Google Scholar 

  2. Habraken, W., Wolke, J.G.C., and Jansen, J.A., Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Adv. Drug Delivery Rev., 2007, vol. 59, no. 4, pp. 234–248.

    Article  CAS  Google Scholar 

  3. Safronova, T.V., Putlayev, V.I., and Shekhirev, M.A., Resorbable calcium phosphates based ceramics, Powder Metall. Met. Ceram., 2013, vol. 52, nos. 5–6, pp. 357–363.

    Article  CAS  Google Scholar 

  4. Lee, J.H., Chang, B.S., Jeung, U.O., Park, K.W., Kim, M.S., and Lee, C.K., The first clinical trial of beta-calcium pyrophosphate as a novel bone graft extender in instrumented posterolateral lumbar fusion, Clin. Orthop. Surg., 2011, vol. 3, no. 3, pp. 238–244.

    Article  Google Scholar 

  5. Putlyaev, V.I., Kukueva, E.V., Safronova, T.V., Ivanov, V.K., and Churagulov, B.R., Features of octacalcium phosphate thermolysis, Refract. Ind. Ceram., 2014, vol. 54, no. 5, pp. 420–424.

    Article  CAS  Google Scholar 

  6. Safina, M.N., Safronova, T.V., and Lukin, E.S., Calcium phosphate based ceramic with a resorbable phase and low sintering temperature, Glass Ceram., 2007, vol. 64, nos. 7–8, pp. 238–243.

    Article  CAS  Google Scholar 

  7. Safronova, T.V., Kuznetsov, A.V., Putlyaev, V.I., Shatalova, T.B., and Ivanov, V.K., Phase interactions and transformations in powders consisting of hydroxyapatite and glasses in the CaO–P2O5 system, Materialovedenie, 2011, no. 2, pp. 36–43

    Google Scholar 

  8. Safronova, T.V., Putlyaev, V.I., Shekhirev, M.A., and Kuznetsov, A.V., Composite ceramic containing a bioresorbable phase, Glass Ceram., 2007, vol. 64, nos. 3–4, pp. 102–106.

    Article  CAS  Google Scholar 

  9. Dosen, A. and Giese, R.F., Thermal decomposition of brushite,CaHPO42H2O to monetite CaHPO4 and the formation of an amorphous phase, Am. Miner., 2011, vol. 96, nos. 2–3, pp. 368–373.

    Article  CAS  Google Scholar 

  10. Safronova, T.V., Putlayev, V.I., Bessonov, K.A., and Ivanov, V.K., Ceramics based on calcium pyrophosphate nanopowders, Process. Appl. Ceram., 2013, vol. 7, no. 1, pp. 9–14.

    Article  CAS  Google Scholar 

  11. Khan, Z.S., Ingale, N.B., and Omanwar, S.K., Synthesis of thermoluminescence a-Ca2P2O7: Eu3 + bionanomaterial, Mater. Lett., 2015, vol. 158, pp. 143–146.

    Article  CAS  Google Scholar 

  12. Safronova, T., Ceramic materials in CaO–P2O5 system, The Second ESR Workshop (COST MP0904) “Single and Multiphase Ferroics and Multiferroics with Restricted Geometries,” November 16–18, 2011, Novi Sad: Univ. of Novi Sad, 2011, p. 21.

    Google Scholar 

  13. Ring, T.A., Fundamentals of Ceramic Powder Processing and Synthesis, New York: Academic, 1996.

    Google Scholar 

  14. Safronova, T.V., Kuznetsov, A.V., Korneychuk, S.A., Putlyaev, V.I., and Shekhirev, M.A., Calcium phosphate powders synthesized from solutions with for bioresorbable ceramics, Cent. Eur. J. Chem., 2009, vol. 7, no. 2, pp. 184–191.

    CAS  Google Scholar 

  15. Minh, D., Lyczko, N., Sebei, H., Nzihou, A., and Sharrock, P., Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: a comparative study, Mater. Sci. Eng., B, 2012, vol. 177, no. 13, pp. 1080–1089.

    Article  Google Scholar 

  16. Oliveira, C., Georgieva, P., Rocha, F., Ferreira, A., and de Azevedo, S.F., Dynamical model of brushite precipitation, J. Cryst. Growth, 2007, vol. 305, no. 1, pp. 201–210.

    Article  CAS  Google Scholar 

  17. Tamimi, F., Sheikh, Z., and Barralet, J., Dicalcium phosphate cements: brushite and monetite, Acta Biomater., 2012, vol. 8, no. 2, pp. 474–487.

    Article  CAS  Google Scholar 

  18. Safronova, T.V., Putlyaev, V.I., Kurbatova, S.A., Shatalova, T.B., Larionov, D.S., Kozlov, D.A., and Evdokimov, P.V., Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1177–1184.

    Article  CAS  Google Scholar 

  19. Safronova, T.V., Phase composition of ceramic based on calcium hydroxyapatite powders containing byproducts of the synthesis reaction, Glass Ceram., 2009, vol. 66, nos. 3–4, pp. 136–139.

    Article  CAS  Google Scholar 

  20. Zhdanov, Yu.F., Khimiya i tekhnologiya polifosfatov (Chemistry and Technology of Polyphosphates), Moscow: Khimiya, 1979.

    Google Scholar 

  21. Wazer, J.R.V. and Holst, K.A., Structure and properties of the condensed phosphates. I. Some general considerations about phosphoric acids, J. Am. Chem. Soc., 1950, vol. 72, no. 2, pp. 639–644.

    Article  Google Scholar 

  22. Beukenkamp, J., Rieman, W., and Lindenbaum, S., Behavior of condensed phosphates in anion-exchange chromatography, Anal. Chem., 1954, vol. 26, no. 3, pp. 505–512.

    Article  CAS  Google Scholar 

  23. Farr, T.D. and Fleming, J.D., The system ammoniapyrophosphoric acid-water at 0 and 25°C, J. Chem. Eng. Data, 1965, vol. 10, no. 1, pp. 20–21.

    Article  CAS  Google Scholar 

  24. Safronova, T.V., Putlyaev, V.I., Kazakova, G.K., and Korneichuk, S.A., Biphase CaO–P2O5 ceramic based on powder synthesized from calcium acetat and ammonium hydrophosphate, Glass Ceram., 2013, vol. 70, nos. 1–2, pp. 65–70.

    Article  CAS  Google Scholar 

  25. International Centre for Diffraction Data. http://www.icdd.com/.

  26. Belyakov, A.V., Lukin, E.S., Safronova, T.V., Safina, M.N., and Putlyaev, V.I., Porous materials made from calcium phosphates (review), Glass Ceram., 2008, vol. 65, nos. 9–10, pp. 337–339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Additional information

Original Russian Text © T.V. Safronova, S.A. Kurbatova, T.B. Shatalova, A.V. Knotko, P.V. Yevdokimov, V.I. Putlyayev, 2016, published in Materialovedenie, 2016, No. 7, pp. 41–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, T.V., Kurbatova, S.A., Shatalova, T.B. et al. Calcium pyrophosphate powder for production of bioceramics synthesized from pyrophosphoric acid and calcium acetate. Inorg. Mater. Appl. Res. 8, 118–125 (2017). https://doi.org/10.1134/S2075113317010348

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317010348

Keywords

Navigation