Skip to main content
Log in

Catalytic Hydrogen Storage Systems Based on Hydrogenation and Dehydrogenation Reactions

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Systems for the production, storage, and accumulation of hydrogen are an important line in the development of fundamental and applied aspects of alternative energy. Liquid organic hydrogen carriers (LOHCs), polycyclic forms of the corresponding aromatic compounds, are an effective way of hydrogen storage and release with contents of up to 7.3% by mass. The authors compare LOHCs as potential substrates for hydrogen storage and release systems based on catalytic hydrogenation and dehydrogenation reactions, inclusively, with cyclohexane, methylcyclohexane, decalin, perhydroterphenyl, bicyclohexyl, perhydrodibenzyltoluene, and perhydroethylcarbazole. Some data on the activity and selectivity of Pt-containing dehydrogenation catalysts are presented for each of the perhydrogenated substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Rao, P.Ch. and Yoon, M., Energies, 2020, vol. 13, no. 22, article no. 6040. https://doi.org/10.3390/en13226040

    Article  CAS  Google Scholar 

  2. Sekine, Y. and Higo, T., Top. Catal., 2021, vol. 64, nos. 7–8, pp. 470–480. https://doi.org/10.1007/s11244-021-01452-x

  3. Cho, J.-Y., Kim, H., Oh, J.-E., and Park, B.Y., Catalysts, 2021, vol. 11, no. 12, article no. 1497. https://doi.org/10.3390/catal11121497

    Article  CAS  Google Scholar 

  4. Preuster, P., Papp, C., and Wasserscheid, P., Acc. Chem. Res., 2017, vol. 50, no. 1, pp. 74–85. https://doi.org/10.1021/acs.accounts.6b00474

    Article  CAS  PubMed  Google Scholar 

  5. Niermann, M., Beckendorf, A., Kaltschmitt, M., and Bonhof, K., Int. J. Hydrogen Energy, 2019, vol. 44, no. 13, pp. 6631–6654. https://doi.org/10.1016/j.ijhydene.2019.01.199

    Article  CAS  Google Scholar 

  6. Gianotti, E., Taillades-Jacquin, M., Rozière, J., and Jones, D.J., ACS Catal., 2018, vol. 8, no. 5, pp. 4660–4680. https://doi.org/10.1021/acscatal.7b04278

    Article  CAS  Google Scholar 

  7. He, T., Pachfule, P., Wu, H., Xu, Q., and Chen, P., Nat. Rev. Mater., 2016, vol. 1, article no. 16059. https://doi.org/10.1038/natrevmats.2016.59

    Article  CAS  Google Scholar 

  8. Kustov, M.L., Kalenchuk, A.N., and Bogdan, V.I., Russ. Chem. Rev., 2020, vol. 89, no. 9, pp. 897–916. https://doi.org/10.1070/RCR4940

    Article  CAS  Google Scholar 

  9. Taube, M., Rippin, D.W.T., Cresswell, D.L., and Knecht, W., Int. J. Hydrogen Energy, 1983, vol. 8, no. 3, pp. 213–225. https://doi.org/10.1016/0360-3199(83)90067-8

    Article  CAS  Google Scholar 

  10. Biniwale, R.B., Rayalu, S., Devotta, S., and Ichikawa, M., Int. J. Hydrogen Energy, 2008, vol. 33, no. 1, pp. 360–365. https://doi.org/10.1016/j.ijhydene.2007.07.028

    Article  CAS  Google Scholar 

  11. Zhu, Q.-L. and Xu, Q., Energy Environ. Sci., 2015, vol. 8, no. 2, pp. 478–512. https://doi.org/10.1039/C4EE03690E

    Article  CAS  Google Scholar 

  12. Shukla, A.A., Gosavi, P.V., Pande, J.V., Kumar, V.P., Chary, K.V.R., and Biniwale, R.B., Int. J. Hydrogen Energy, 2010, vol. 35, no. 9, pp. 4020–4026. https://doi.org/10.1016/j.ijhydene.2010.02.014

    Article  CAS  Google Scholar 

  13. Itoh, N., Xu, W.C., Hara, S., and Sakaki, K., Catal. Today, 2000, vol. 56, nos. 1–3, pp. 307–314. https://doi.org/10.1016/S0920-5861(99)00288-6

  14. Kariya, N., Fukuoka, A., and Ichikawa, M., Appl. Catal., A, 2002, vol. 233, nos. 1–2, pp. 91–102. https://doi.org/10.1016/S0926-860X(02)00139-4

  15. Klvana, D., Chaouki, J., Kusohorsky, D., Chavarie, C., and Pajonk, G.M., Appl. Catal., 1988, vol. 42, no. 1, pp. 121–130. https://doi.org/10.1016/S0166-9834(00)80080-9

    Article  CAS  Google Scholar 

  16. Schildhauer, T., Newson, E., and Müller, S., J. Catal., 2001, vol. 198, no. 2, pp. 355–358. https://doi.org/10.1006/jcat.2000.3133

    Article  CAS  Google Scholar 

  17. Makaryan, I.A., Sedova, I.V., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, no. 12, pp. 1815–1830. https://doi.org/10.1134/S1070427220120034

    Article  CAS  Google Scholar 

  18. Cromwell, D.K., Vasudevan, P.T., Pawelec, B., and Fierro, J.L.G., Catal. Today, 2016, vol. 259, part 1, pp. 119–129. https://doi.org/10.1016/j.cattod.2015.05.030

    Article  CAS  Google Scholar 

  19. Manabe, S., Yabe, T., Nakano, A., Nagatake, S., Higo, T., Ogo, S., Nakai, H., and Sekine, Y., Chem. Phys. Lett., 2018, vol. 711, pp. 73–76. https://doi.org/10.1016/j.cplett.2018.09.026

    Article  CAS  Google Scholar 

  20. Yan, J., Wang, W., Miao, L., Wu, K., Chen, G., Huang, Y., and Yang, Y., Int. J. Hydrogen Energy, 2018, vol. 43, no. 19, pp. 9343–9352. https://doi.org/10.1016/j.ijhydene.2018.04.003

    Article  CAS  Google Scholar 

  21. US. Patent 7 101530 B2, 2005.

  22. Kariya, N., Fukuoka, A., Utagawa, T., Sakuramoto, M., Goto, Y., and Ichikawa, M., Appl. Catal., A, 2003, vol. 247, no. 2, pp. 247–259. https://doi.org/10.1016/S0926-860X(03)00104-2

  23. Hodoshima, S., Arai, H., Takaiwa, S., and Saito, Y., Int. J. Hydrogen Energy, 2003, vol. 28, no. 11, pp. 1255–1262. https://doi.org/10.1016/S0360-3199(02)00250-1

    Article  CAS  Google Scholar 

  24. Hodoshima, S., Nagata, H., and Saito, Y., Appl. Catal., A, 2005, vol. 292, pp. 90–96. https://doi.org/10.1016/j.apcata.2005.05.040

  25. Li, X., Tuo, Y., Li, P., Duan, X., Jiang, H., and Zhou, X., Carbon, 2014, vol. 67, pp. 775–783. https://doi.org/10.1016/j.carbon.2013.10.071

    Article  CAS  Google Scholar 

  26. Jiang, N., Rao, K.S.R., Jin, M.-J., and Park, S.-E., Appl. Catal., A, 2012, vols. 425–426, pp. 62–67. https://doi.org/10.1016/j.apcata.2012.03.001

  27. Sebastián, D., Bordejé, E.G., Calvillo, L., Lázaro, M.J., and Moliner, R., Int. J. Hydrogen Energy, 2008, vol. 33, no. 4, pp. 1329–1334. https://doi.org/10.1016/j.ijhydene.2007.12.037

    Article  CAS  Google Scholar 

  28. Wang, B., Goodman, D.W., and Froment, G.F., J. Catal., 2008, vol. 253, no. 2, pp. 229–238. https://doi.org/10.1016/j.jcat.2007.11.012

    Article  CAS  Google Scholar 

  29. Amende, M., Gleichweit, C., Werner, K., Schernich, S., Zhao, W., Lorenz, M.P.A., Höfert, O., Papp, C., Koch, M., Wasserscheid, P., Laurin, M., Steinrück, H.-P., and Libuda, J., ACS Catal., 2014, vol. 4, no. 2, pp. 657–665. https://doi.org/10.1021/cs400946x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amende, M., Gleichweit, C., Schernich, S., Höfert, O., Lorenz, M.P.A., Zhao, W., Koch, M., Obesser, K., Papp, C., Wasserscheid, P., Steinrück, H.-P., and Libuda, J., J. Phys. Chem. Lett., 2014, vol. 5, no. 8, pp. 1498–1504. https://doi.org/10.1021/jz500157r

    Article  CAS  PubMed  Google Scholar 

  31. Eblagon, K.M., Tam, K., Yu, K.M.K., Zhao, S.-L., Gong, X-Q., He, H., Ye, L., Wang, L.-C., Ramirez-Cuesta, A.J., and Tsang, S.C., J. Phys. Chem. C, 2010, vol. 114, no. 21, pp. 9720–9730. https://doi.org/10.1021/jp908640k

    Article  CAS  Google Scholar 

  32. Crawford, P., Burch, R., Hardacre, C., Hindle, K., Hu, P., Kalirai, B., and Rooney, D.W., J. Phys. Chem. C, 2007, vol. 111, no. 17, pp. 6434–6439. https://doi.org/10.1021/jp070137c

    Article  CAS  Google Scholar 

  33. Yang, M., Dong, Y., Fei, S., Ke, H., and Cheng, H., Int. J. Hydrogen Energy, 2014, vol. 39, pp. 18976–18983. https://doi.org/10.1016/j.ijhydene.2014.09.123

    Article  CAS  Google Scholar 

  34. Feng, Z., Chen, X., and Bai, X., Environ. Sci. Pollut. Res., 2020, vol. 27, no. 29, pp. 36172–36185. https://doi.org/10.1007/s11356-020-09698-w

    Article  CAS  Google Scholar 

  35. Moores, A., Poyatos, M., Luo, Y., and Crabtree, R.H., New J. Chem., 2006, vol. 30, no. 11, pp. 1675–1678. https://doi.org/10.1039/B608914C

    Article  CAS  Google Scholar 

  36. Sung, J.S., Choo, K.Y., Kim, T.H., Tarasov, A.L., Tkachenko, O.P., and Kustov, L.M., Int. J. Hydrogen Energy, 2008, vol. 33, no. 11, pp. 2721–2728. https://doi.org/10.1016/j.ijhydene.2008.03.037

    Article  CAS  Google Scholar 

  37. Kalenchuk, A., Bogdan, V., Dunaev, S., and Kustov, L., Fuel, 2020, vol. 280, article no. 118625. https://doi.org/10.1016/j.fuel.2020.118625

    Article  CAS  Google Scholar 

  38. Kustov, L.M., Kalenchuk, A.N., Dunaev, S.F., and Bogdan, V.I., Mendeleev Commun., 2019, vol. 29, no. 1, pp. 25–28. https://doi.org/10.1016/j.mencom.2019.01.007

    Article  CAS  Google Scholar 

  39. Kalenchuk, A.N., Bogdan, V.I., Dunaev, S.F., and Kustov, L.M., Chem. Eng. Technol., 2018, vol. 41, no. 9, pp. 1842–1846. https://doi.org/10.1002/ceat.201800312

    Article  CAS  Google Scholar 

  40. Kalenchuk, A.N., Bogdan, V.I., and Kustov, L.M., Catal. Ind., 2015, vol. 7, no. 1, pp. 60–63. https://doi.org/10.1134/S2070050415010080

    Article  Google Scholar 

  41. Kalenchuk, A.N., Davshan, N.A., Bogdan, V.I., Dunaev, S.F., and Kustov, L.M., Russ. Chem. Bull., 2018, vol. 67, no. 1, pp. 28–32. https://doi.org/10.1007/s11172-018-2032-8

    Article  CAS  Google Scholar 

  42. Kalenchuk, A.N., Bogdan, V.I., Dunaev, S.F., and Kustov, L.M., Int. J. Hydrogen Energy, 2018, vol. 43, no. 12, pp. 6191–6196. https://doi.org/10.1016/j.ijhydene.2018.01.121

    Article  CAS  Google Scholar 

  43. Kalenchuk, A.N., Bogdan, V.I., Dunaev, S.F., and Kustov, L.M., Fuel Process. Technol., 2018, vol. 169, pp. 94–100. https://doi.org/10.1016/j.fuproc.2017.09.023

    Article  CAS  Google Scholar 

  44. Kalenchuk, A.N. and Kustov, L.M., Molecules, 2022, vol. 27, no. 7, article no. 2236. https://doi.org/10.3390/molecules27072236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bogdan, V.I., Kalenchuk, A.N., Chernavsky, P.A., Bogdan, T.V., Mishanin, I.I., and Kustov, L.M., Int. J. Hydrogen Energy, 2021, vol. 46, no. 27, pp. 14532–14539. https://doi.org/10.1016/j.ijhydene.2021.01.208

    Article  CAS  Google Scholar 

  46. Jang, M., Jo, Y.S., Lee, W.J., Shin, B.S., Sohn, H., Jeong, H., Jang, S.C., Kwak, S.K., Kang, J.W., and Yoon, C.W., ACS Sustainable Chem. Eng., 2019, vol. 7, no. 1, pp. 1185–1194. https://doi.org/10.1021/acssuschemeng.8b04835

    Article  CAS  Google Scholar 

  47. Jorschick, H., Bösmann, A., Preuster, P., and Wasserscheid, P., ChemCatChem, 2018, vol. 10, no. 19, pp. 4329–4337. https://doi.org/10.1002/cctc.201800960

    Article  CAS  Google Scholar 

  48. Brückner, N., Obesser, K., Bösmann, A., Teichmann, D., Arlt, W., Dungs, J., and Wasserscheid, P., ChemSusChem, 2014, vol. 7, no. 1, pp. 229–235. https://doi.org/10.1002/cssc.201300426

    Article  CAS  PubMed  Google Scholar 

  49. Ouma, C.N.M., Modisha, P.M., and Bessarabov, D., Comput. Mater. Sci., 2020, vol. 172, article no. 109332. https://doi.org/10.1016/j.commatsci.2019.109332

    Article  CAS  Google Scholar 

  50. Lee, S., Lee, J., Kim, T., Han, G., Lee, J., Lee, K., and Bae, J., Int. J. Hydrogen Energy, 2021, vol. 46, no. 7, pp. 5520–5529. https://doi.org/10.1016/j.ijhydene.2020.11.038

    Article  CAS  Google Scholar 

  51. Shi, L., Zhou, Y., Qi, S., Smith, K.J., Tan, X., Yan, J., and Yi, C., ACS Catal., 2020, vol. 10, no. 18, pp. 10661–10671. https://doi.org/10.1021/acscatal.0c03091

    Article  CAS  Google Scholar 

  52. Aakko-Saksa, P.T., Vehkamäki, M., Kemell, M., Keskiväli, L., Simell, P., Reinikainen, M., Tapper, U., and Repo, T., Chem. Commun., 2020, vol. 56, no. 11, pp. 1657–1660. https://doi.org/10.1039/C9CC09715E

    Article  CAS  Google Scholar 

  53. Shi, L., Qi, S., Qu, J., Che, T., Yi, C., and Yang, B., Int. J. Hydrogen Energy, 2019, vol. 44, no. 11, pp. 5345–5354. https://doi.org/10.1016/j.ijhydene.2018.09.083

    Article  CAS  Google Scholar 

  54. Geißelbrecht, M., Mrusek, S., Müller, K., Preuster, P., Bösmann, A., and Wasserscheid, P., Energy Environ. Sci., 2020, vol. 13, no. 9, pp. 3119–3128. https://doi.org/10.1039/D0EE01155J

    Article  Google Scholar 

  55. Jorschick, H., Geißelbrecht, M., Eßl, M., Preuster, P., Bösmann, A., and Wasserscheid, P., Int. J. Hydrogen Energy, 2020, vol. 45, no. 29, pp. 14897–14906. https://doi.org/10.1016/j.ijhydene.2020.03.210

    Article  CAS  Google Scholar 

  56. Preuster, P., Papp, C., and Wasserscheid, P., Acc. Chem. Res., 2017, vol. 50, no. 1, pp. 74–85. https://doi.org/10.1021/acs.accounts.6b00474

    Article  CAS  PubMed  Google Scholar 

  57. Auer, F., Blaumeiser, D., Bauer, T., Bösmann, A., Szesni, N., Libuda, J., and Wasserscheid, P., Catal. Sci. Technol., 2019, vol. 9, no. 13, pp. 3537–3547. https://doi.org/10.1039/c9cy00817a

    Article  CAS  Google Scholar 

  58. Nagatake, S., Higo, T., Ogo, S., Sugiura, Y., Watanabe, R., Fukuhara, C., and Sekine, Y., Catal. Lett., 2016, vol. 146, no. 1, pp. 54–60. https://doi.org/10.1007/s10562-015-1623-3

    Article  CAS  Google Scholar 

  59. Sugiura, Y., Nagatsuka, T., Kubo, K., Hirano, Y., Nakamura, A., Miyazawa, K., Iizuka, Y., Furuta, S., Iki, H., Higo, T., and Sekine, Y., Chem. Lett., 2017, vol. 46, no. 11, pp. 1601–1604. https://doi.org/10.1246/cl.170722

    Article  CAS  Google Scholar 

  60. Yang, X., Song, Y., Cao, T., Wang, L., Song, H., and Lin, W., Mol. Catal., 2020, vol. 492, article no. 110971. https://doi.org/10.1016/j.mcat.2020.110971

    Article  CAS  Google Scholar 

  61. Yan, J., Wang, W., Miao, L., Wu, K., Chen, G., Huang, Y., and Yang, Y., Int. J. Hydrogen Energy, 2018, vol. 43, no. 19, pp. 9343–9352. https://doi.org/10.1016/j.ijhydene.2018.04.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kalenchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenchuk, A.N., Bogdan, V.I. Catalytic Hydrogen Storage Systems Based on Hydrogenation and Dehydrogenation Reactions. Catal. Ind. 15, 165–174 (2023). https://doi.org/10.1134/S2070050423020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423020083

Keywords:

Navigation