Skip to main content
Log in

The Effect of Electron-Ion Collisions on Breaking Cylindrical Plasma Oscillations

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The influence of electron-ion collisions on breaking cylindrical nonlinear plasma oscillations is studied. Numerical calculations by the particle method and an analytic analysis by the perturbation method in the weak nonlinearity regime show that, with an increasing collision frequency, the time needed to break plasma oscillations increases. The threshold value of the collision frequency is found exceeding which the density singularity does not arise. In this case, the maximum of the electron density formed outside the axis of the oscillations, the growth of which in the regime of rare collisions leads to the breaking effect, after some growth begins to decrease due to the damping of the oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New, York, London, 1972).

  2. Ya. B. Zeldovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  3. A. I. Akhiezer and R. V. Polovin, “Theory of wave motion of an electron plasma,” Sov. Phys. JETP 3, 696–705 (1956).

    MathSciNet  MATH  Google Scholar 

  4. J. M. Dawson, “Nonlinear electron oscillations in a cold plasma,” Phys. Rev. 113, 383–387 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Lehmann, E. W. Laedke, and K. H. Spatschek, “Localized wake-field excitation and relativistic wave-breaking,” Phys. Plasmas 14, 103109 (2007).

    Article  Google Scholar 

  6. L. M. Gorbunov, A. A. Frolov, E. V. Chizhonkov, and N. E. Andreev, “Breaking of nonlinear cylindrical plasma oscillations,” Plasma Phys. Rep. 36, 345–356 (2010).

    Article  Google Scholar 

  7. A. A. Frolov and E. V. Chizhonkov, “Relativistic breaking effect of electron oscillations in a plasma slab,” Vychisl. Metody Programm. 15, 537–548 (2014).

    Google Scholar 

  8. E. Infeld, G. Rowlands, and A. A. Skorupski, “Analytically solvable model of nonlinear oscillations in a cold but viscous and resistive plasma,” Phys. Rev. Lett. 102, 145005 (2009).

    Article  Google Scholar 

  9. P. S. Verma, J. K. Soni, S. Segupta, and P. K. Kaw, “Nonlinear oscillations in a cold dissipative plasma,” Phys. Plasmas 17, 044503 (2010).

    Article  Google Scholar 

  10. A. A. Frolov and E. V. Chizhonkov, “Influence of electron collisions on the breaking of plasma oscillations,” Plasma Phys. Rep. 44, 398–404 (2018).

    Article  Google Scholar 

  11. N. N. Bogoliubov and Yu. A. Mitropolskii, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1974; Gordon and Breach, London, 1961).

  12. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981).

    MATH  Google Scholar 

  13. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vyssh. Shkola, Moscow, 1978; Springer, Berlin, Heidelberg, 1984).

  14. V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  15. V. P. Silin, Introduction to Kinetic Theory of Gases (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  16. V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media, 2nd ed. (Librokom, Moscow, 2012) [in Russian].

    Google Scholar 

  17. S. I. Braginskii, “Transport phenomena in plasma,” in Problems of Plasma Theory (Gosatomizdat, Moscow, 1963), pp. 183–285 [in Russian].

    Google Scholar 

  18. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1968) [in Russian].

    MATH  Google Scholar 

  19. E. V. Chizhonkov, “Diagnostics of a gradient catastrophe for a class of quasilinear hyperbolic systems,” Russ. J. Numer. Anal. Math. Model. 32, 13–26 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. N. S. Bakhvalov, A. A. Kornev, and E. V. Chizhonkov, Numerical Methods. Task Solving and Exercises. Classical University Textbook, 2nd ed. (Laboratoriya Znanii, Moscow, 2016) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chizhonkov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.A., Chizhonkov, E.V. The Effect of Electron-Ion Collisions on Breaking Cylindrical Plasma Oscillations. Math Models Comput Simul 11, 438–450 (2019). https://doi.org/10.1134/S2070048219030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048219030104

Keywords:

Navigation