Skip to main content
Log in

Dendrochronological Indication of Phyllophages’ Outbreaks by Larch Radial Growth in the Forest-steppe Zone of the Republic of Tyva

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

One of the possible consequences of climate change is a change in the demographic dynamics of phyllophagous insects. For a retrospective analysis of this dynamics, tree rings are used, especially in regions with limited documentary data. Due to the complex nature of the factors determining tree growth, in order to more clearly identify pest-induced defoliation in tree-ring chronologies one suppress the climatic signal expressed directly or indirectly (through chronologies of non-host tree species). However, in South Siberia, the choice of non-host species is hampered by the wide distribution of polyphages, like the gypsy moth (Lymantria dispar Linnaeus) and the Siberian silk moth (Dendrolimus sibiricus Tsch.). Therefore, the analysis of pest outbreaks in larch forests of the Republic of Tuva low mountains was started by removing the climatic response based on instrumental data, identifying depressions in the residual time-series of individual tree radial growth at several sites, and comparing them with available actual data on forest damage by phyllofages. Dendroclimatic analysis showed that the model including the precipitation-to-maximum-temperature ratio for June-September of the previous season and June of the current year, i.e. the degree of aridity during the previous and current growing season, describes 43.7% of the regional variation in the growth of Siberian larch (Larix sibirica Ledeb.). After removal of this component, several periods of larch growth depression were revealed during confirmed outbreaks of the Siberian silk moth, gypsy moth, and larch tortrix (Zeiraphera diniana Gn.). The use of documented data over 1998–2016 allowed to clarify the threshold values of the portion of affected trees for intensities of the growth depression ranging 1–1.5 standard deviations, providing the required reliability of the outbreak reconstruction. The dependence of the spatio-temporal patterns of growth depression on the pest species was revealed, reflecting their migration in the affected area. It has been shown that growth depressions may be delayed compared with the actual damage by pests due to the long recovery after recurrent defoliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Antonov, V.S., Climate zones of Tuva, Byull. Vses. Geogr. O-va, 1954, vol. 86, no. 6, pp. 532–536.

    Google Scholar 

  2. Babushkina, E.A., Zhirnova, D.F., Belokopytova, L.V., Tychkov, I.I., Vaganov, E.A., and Krutovskii, K., Response of four tree species to changing climate in a moisture-limited area of South Siberia, Forests, 2019, vol. 10, no. 11, art. ID 999.

    Article  Google Scholar 

  3. Beguería, S., Vicente-Serrano, S.M., Fergus, R., and Borja L., Standardized Precipitation Evapotranspiration Index (SPEI) revisited: parameter fitting, evapotranspiration models, kernel weighting, tools, datasets and drought monitoring, Int. J. Climatol., 2014, vol. 34, pp. 3001–3023.

    Article  Google Scholar 

  4. Bocharov, A.Yu. and Savchuk, D.A., Structure of forests and climatic response of trees in forest-steppe contact zone, the Altai Mountains, J. Sib. Fed. Univ., Biol., 2015, no. 4 (8), pp. 426–440.

  5. Büntgen, U., Frank, D., Liebhold, A., Johnson, D., Carrer, M., Urbinati, C., Grabner, M., Nicolussi, K., Levanic, T., and Esper, J., Three centuries of insect outbreaks across the European Alps, New Phytol., 2009, vol. 182, pp. 929−941.

    Article  PubMed  Google Scholar 

  6. Cappuccino, N. and Price, P.W., Population Dynamics: New Approaches and Synthesis, San Diego, CA: Academic, 1995.

    Google Scholar 

  7. Chenlemuge, T., Schuldt, B., Dulamsuren, C., Hertel, D., Leuschner, C., and Hauck, M., Stem increment and hydraulic architecture of a boreal conifer (Larix sibirica) under contrasting macroclimates, Trees, 2015, vol. 29, no. 3, pp. 623‒636.

    Article  Google Scholar 

  8. Cook, E.R., A time series analysis approach to tree-ring standardization, PhD Thesis, Tucson, AZ: Univ. of Arizona, 1985.

  9. Cook, E.R. and Kairiukstis, L.A., Methods of Dendrochronology: Applications in the Environmental Sciences, Dordrecht: Kluwer, 1990.

    Book  Google Scholar 

  10. Cook, E.R. and Krusic, P.J., Program ARSTAN (Version 41d), Palisades (NY): Lamont-Doherty Earth Obs., Columbia Univ., 2005. http://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software.

    Google Scholar 

  11. Data Documentation for Dataset 9290c, Global Synoptic Climatology Network. C. The former USSR, Version 1.0, Asheville, NC: Natl. Clim. Data Center, 2005. https:// www1.ncdc.noaa.gov/pub/data/documentlibrary/tddoc/ td9290c.pdf.

  12. Dulamsuren, C., Hauck, M., Bader, M., Osokhjargal, D., Oyungerel, S., Nyambayar, S., Runge, M., and Leuschner, C., Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia, Tree Physiol., 2009, vol. 29, no. 1, pp. 99‒110.

    Article  PubMed  Google Scholar 

  13. Esper, J., Buntgen, U., Frank, D.C., Nievergelt, D., and Liebhold, A., 1200 years of regular outbreaks in alpine insects, Proc. R. Soc. B, 2007, vol. 274, pp. 671−679.

    Article  PubMed  Google Scholar 

  14. Fan, Z.X. and Bräuning, A., Tree-ring evidence for the historical cyclic defoliator outbreaks on Larix potaninii in the central Hengduan Mountains, SW China, Ecol. Indic., 2017, vol. 74, pp. 160–171.

    Article  Google Scholar 

  15. Filion, L., Payette, S., Gauthier, L., and Boutin, Y., Light rings in sub-arctic conifers as a dendrochronological tool, Quat. Res., 1986, vol. 26, pp. 272–279.

    Article  Google Scholar 

  16. Fomin, S.N. and Sapelkin, S.V., History of forest pathological monitoring of the centers of unpaired silkworm in the foothills of the Eastern and Western Tannu-Ola, Proc. XI Ubsunur Int. Symp. “Ecosystems of Central Asia: Research, Conservation, and Rational Use,” Kyzyl, July 3–8, 2012, Kyzyl: Tuva Gos. Univ., 2012, pp. 194–197.

  17. Fomin, S.N., Barinov, V.V., Myglan, V.S., Siberian silk moth in the Republic of Tuva, history of research, Sib. Lesn. Zh., 2019, no. 5, pp. 3–14.

  18. Galiano, L., Martínez-Vilalta, J., and Lloret, F., Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode, New Phytol., 2011, vol. 190, no. 3, pp. 750‒759.

    Article  CAS  PubMed  Google Scholar 

  19. Gerasimova O.V., Zharnikov, Z.Yu., Knorre, A.A., and Myglan, V.S., Climatically determined dynamics of radial growth of stone pine and fir in the mountain taiga belt of the Ergaki Natural Park, J. Sib. Fed. Univ., Biol., 2010, no. 3 (1), pp. 18–29.

  20. Gninenko, Yu.I., Outbreaks of mass reproduction of forest insects in Siberia and the Far East in the last quarter of the 20th century, Lesokhoz. Inf., 2003, no. 1, pp. 46–57.

  21. Gninenko, Yu.I., “Forgotten” needle- and leaf-eating forest pests, Readings in Memoriam of Andrei Ignatievich Ilyinskii, Pushkino: All-Russ. Res. Inst. Silvicult. Mech. For., 2018, pp. 5–24.

  22. Gower, S.T. and Richards, J.H., Larches: deciduous conifers in an evergreen world, BioScience, 1990, vol. 40, no. 11, pp. 818–826.

    Article  Google Scholar 

  23. Grissino-Mayer, H.D., Evaluating cross-dating accuracy: a manual and tutorial for the computer program COFECHA, Tree-Ring Res., 2001, vol. 57, pp. 205–221.

    Google Scholar 

  24. Harris, I., Jones, P.D., Osborn, T.J., and Lister, D.H., Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset, Int. J. Climatol., 2014, vol. 34, pp. 623–642.

    Article  Google Scholar 

  25. Holmes, R.L., Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Bull., 1983, vol. 43, pp. 68–78.

    Google Scholar 

  26. Hughes, M.K., Swetnam, T.W., and Diaz, H.F., Dendroclimatology: Progress and Prospects, Dordrecht: Springer-Verlag, 2010.

    Google Scholar 

  27. Iyengar, S.V., Balakrishnan, J., and Kurths, J., Impact of climate change on larch budmoth cyclic outbreaks, Sci. Rep., 2016, vol. 6, art. ID 27845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson, D.M., Büntgen, U., Frank, D.C., Kausrud, K., Haynes, K.J., Liebhold, A.M., Esper, J., and Stenseth, N.C., Climatic warming disrupts recurrent Alpine insect outbreaks, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 20576−20581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khansaritoreh, E., Schuldt, B., and Dulamsuren, C., Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe, Ann. For. Sci., 2018, vol. 75, art. ID 30.

    Article  Google Scholar 

  30. Kolomiets, N.G., Siberian silk moth and its role in the coniferous forests of Western Siberia, in Estestvennoe vozobnovlenie khvoinykh v Zapadnoi Sibiri (Natural Afforestation of Coniferous in Western Siberia), Novosibirsk: Sib. Otd., Akad. Nauk SSSR, 1962, no. 7, pp. 137–161.

  31. Liang, C., Filion, L., and Cournoyer, L., Wood structure of biotically and climatically induced light rings in eastern larch (Larix laricina), Can. J. For. Res., 1997, vol. 27, pp. 1538–1547.

    Article  Google Scholar 

  32. Makunina, N.I., Egorova, A.V., and Pisarenko, O.Yu., Areas of altitude-zonal forests of Tuva, Probl. Bot. Yuzh. Sib. Mongol., 2019, no. 1 (18), pp. 311–319.

  33. Mattson, W.J. and Haack, R.A., The role of drought in outbreaks of plant-eating insects, BioScience, 1987, vol. 37, no. 2, pp. 110‒118.

    Article  Google Scholar 

  34. McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., and Yepez, E.A., Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol., 2008, vol. 178, no. 4, pp. 719‒739.

    Article  PubMed  Google Scholar 

  35. McDowell, N.G., Allen, C.D., and Marshall, L., Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect, Global Change Biol., 2010, vol. 16, no. 1, pp. 399‒415.

    Article  Google Scholar 

  36. Mikhailov, N.I., Gory Yuzhnoi Sibiri: ocherk prirody (Nature of Mountains of Southern Siberia), Moscow: Geografgiz, 1961.

  37. Nadzor, uchet i prognoz massovykh razmnozhenii khvoe- i listogryzushchikh nasekomykh v lesakh SSSR (Control, Accounting, and Forecast of Mass Outbreaks of Needle- and Leaf-Eating Pests in the Forests of USSR), Il’inskii, A.I., Ed., Moscow: Lesnaya Prom-st’, 1965.

  38. Nazarov, A.N. and Myglan, V.S., Prospects for building a 6000-year-old chronology of Siberian pine for the territory of Central Altai, J. Sib. Fed. Univ., Biol., 2012, vol. 5, no. 1, pp. 70–88.

    Google Scholar 

  39. Nola, P., Morales, M., Motta, R., and Villalba, R., The role of larch budmoth (Zeiraphera diniana Gn.) on forest succession in a larch (Larix deciduas Mill.) and Swiss stone pine (Pinus cembra L.) stand in the Susa Valley (Piedmont, Italy), Trees, 2006, vol. 20, pp. 371−382.

    Article  Google Scholar 

  40. Pavlov, I.N., Ageev, A.A., and Barabanova, O.A., Formation of annual rings in the main coniferous forest-forming species of Siberia after crown defoliation by Dendrolimus superans sibiricus Tschetv., Khvoinye Boreal’noi Zony, 2009, no. 26 (2), pp. 161–172.

  41. Rinn, F., TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications, Heidelberg: RinnTech, 2003.

    Google Scholar 

  42. Rossi, S., Rathgeber, C.B.K., and Deslauriers, A., Comparing needle and shoot phenology with xylem development on three conifer species in Italy, Ann. For. Sci., 2009, vol. 66, no. 2, art. ID 206.

    Article  Google Scholar 

  43. Ryerson, D.E., Swetnam, T.H., and Lynch, A.M., A tree-ring reconstruction of western spruce budworm outbreaks in the San Juan Mountains, Colorado, USA, Can. J. For. Res., 2003, vol. 33, pp. 1010–1028.

    Article  Google Scholar 

  44. Schweingruber, F.H., Auswirkungen des Lärchenwicklerbefalls auf die Jahrringstruktur der Lärche, Schweiz. Z. Forstwes., 1979, vol. 130, pp. 1071–1093.

    Google Scholar 

  45. Schweingruber, F.H., Tree Rings: Basics and Applications of Dendrochronology, Dordrecht: Springer-Verlag, 1988.

    Book  Google Scholar 

  46. Selyaninov, G.T., Methodology of agricultural climate characteristics, in Mirovoi agroklimaticheskii spravochnik (World Agroclimatic Handbook), Leningrad: Gidrometeoizdat, 1937, pp. 5–29.

  47. Shestakova, T.A., Gutiérrez, E., Kirdyanov, A.V., Camarero, J.J., Génova, M., Knorre, A.A., Linares, J.C., de Dios, V.R., Sánchez-Salguero, R., and Voltas, J., Forests synchronize their growth in contrasting Eurasian regions in response to climate warming, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 3, pp. 662–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shiyatov, S.G., Dendrokhronologiya verkhnei granitsy lesa na Urale (Dendrochronology of the Upper Forest Line in the Urals), Moscow: Nauka, 1986.

  49. Simard, M., Powell, E.N., Raffa, K.F., and Turner, M.G., What explains landscape patterns of tree mortality caused by bark beetle outbreaks in Greater Yellowstone? Global Ecol. Biogeogr., 2012, vol. 21, pp. 556−567.

    Article  Google Scholar 

  50. Speer, J.H., Swetnam, T.W., Wickman, B.E., and Youngblood, A., Changes in pandora moth outbreak dynamics during the past 622 years, Ecology, 2001, vol. 82, pp. 679−697.

    Article  Google Scholar 

  51. Stahle, D.W., Diaz, J.V., Burnette, D.J., Paredes, J.C., Heim, R.R., Fye, F.K., Soto, R.A., Therrell, M.D., Cleaveland, M.K., and Stahle, D.K., Major Mesoamerican droughts of the past millennium, Geophys. Res. Lett., 2011, vol. 38, no. 5, art. ID L046472.

    Article  Google Scholar 

  52. Swetnam, T.W. and Lynch, A.M., Multicentury, regional-scale patterns of western spruce budworm outbreaks, Ecol. Monogr., 1993, vol. 63, pp. 399−424.

    Article  Google Scholar 

  53. Swetnam, T.W., Thompson, M.A., and Sutherland, E.K., Using Dendrochronology to Measure Radial Growth of Defoliated Trees, Washington, DC: US Dep. Agric., 1985.

    Google Scholar 

  54. Thomson, A.J., Shepherd, R.F., Harris, J.W.E., and Silversides, R.H., Relating weather to outbreaks of western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae) in British Columbia, Can. Entomol., 1984, vol., pp. 375−381.

  55. Vaganov, E.A. and Terskov, I.A., Analiz rosta dereva po strukture godichnykh kolets (Analysis of Tree Growth by the Tree Rings Structure), Novosibirsk: Nauka, 1977.

  56. Vanhanen, H., Veteli, T.O., Päivinen, S., Kellomäki, S., and Niemelä, P., Climate change and range shifts in two insect defoliators: gypsy moth and nun moth—a model study, Silva Fenn., 2007, vol. 41, no. 4, pp. 621‒638.

    Article  Google Scholar 

  57. Vorontsov, A.I., Lesnaya entomologiya (Forest Entomology), Moscow: Vysshaya Shkola, 1982, 4th ed.

  58. Weber, U.M., Dendroecological reconstruction and interpretation of larch budmoth (Zeiraphera diniana) outbreaks in two central alpine valleys of Switzerland from 1470−1990, Trees, 1997, vol. 11, pp. 277−290.

    Google Scholar 

  59. Weidner, K., Heinrich, I., Helle, G., Löffler, J., Neuwirth, B., Schleser, G.H., and Vos, H., Consequences of larch budmoth outbreaks on the climatic significance of ring width and stable isotopes of larch, Trees, 2010, vol. 24, pp. 399–409.

    Article  Google Scholar 

  60. Wigley, T., Briffa, K., and Jones, P., On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology, J. Appl. Meteorol. Climatol., 1984, vol. 23, pp. 201–213.

    Article  Google Scholar 

  61. Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., and McDowell, N.G., Temperature as a potent driver of regional forest drought stress and tree mortality, Nat. Clim. Change, 2013, vol. 3, pp. 292–297.

    Article  Google Scholar 

  62. Wu, X., Liu, H., Wang, Y., and Deng, M., Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China, Environ. Res. Lett., 2013, vol. 8, no. 2, art. ID 024016.

    Article  Google Scholar 

  63. Xu, B., Hicke, J.A., and Abatzoglou, J.T., Drought and moisture availability and recent western spruce budworm outbreaks in the Western United States, Forests, 2019, vol. 10, art. ID 354.

    Article  Google Scholar 

  64. Zhirnova, D.F., Babushkina, E.A., Belokopytova, L.V., and Vaganov, E.A., To which side are the scales swinging? Growth stability of Siberian larch under permanent moisture deficit with periodic droughts, For. Ecol. Manag., 2020, vol. 459, art. ID 117841.

    Article  Google Scholar 

Download references

FUNDING

This study was supported financially by the Russian Science Foundation (project 19-18-00145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Belokopytova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

The article translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyakova, T.V., Belokopytova, L.V., Zhirnova, D.F. et al. Dendrochronological Indication of Phyllophages’ Outbreaks by Larch Radial Growth in the Forest-steppe Zone of the Republic of Tyva. Contemp. Probl. Ecol. 14, 37–48 (2021). https://doi.org/10.1134/S1995425521010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425521010054

Keywords:

Navigation