Skip to main content
Log in

Molecular-Genetic Methods in Plant Ecology

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Molecular-genetic analysis is widely used in various fields of science. In particular, molecular ecology for environmental assessment is the basis of the modern methodological base. Different species and populations contain a large pool of genetic variability, which plays a major role in the adaptation of species to various environmental conditions. A significant part of this variability does not have a clear phenotypic expression, which greatly complicates the study of the huge genetic potential of genera, species, and populations. More convenient markers for studying these issues are seed proteins and DNA, which are characterized by significant intraspecific polymorphism and independence from the external conditions of plant development; the most suitable methods are the electrophoresis of seed storage proteins and all methods for the PCR amplification of genomic DNA. This review shows the role of molecular-genetic methods in solving traditional environmental issues related to taxonomy, phylogeny, evolution, the study of genetic variability, and the identification of inbreeding depression in natural and artificially created populations of endemic, rare, and endangered species, as well as in their certification (by barcoding) and creating DNA genebanks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Abraham, E.M., Ganopoulos, I., Giagourta, P., Osathanunkul, M., Bosmali, I., Tsaftaris, A., Papaioannou, A., and Madesis, P., Genetic diversity of Lotus corniculatus in relation to habitat type, species composition and species diversity, Biochem. Syst. Ecol., 2015, vol. 63, pp. 59–67.

    CAS  Google Scholar 

  2. ACDB DNA bank. https://www.acdb.co.za/acdb-dna-bank/. Accessed December, 2019.

  3. Agafonov, A.V., Agafonova, O.V., Salomon, B., and Lu, B.-R., Reproductive compatibility of biotypes of Elymus macrourus and E. jacutensis: genetic analysis of spinosity as a diagnostic feature, Sib. Ekol. Zh., 1996, vol. 3, no. 6, pp. 527–533.

    Google Scholar 

  4. Agafonova (Dorogina), O.V. and Agafonova, M.A., Identification of closely related species Hedysarum theinum, H. neglectum, H. austrosibiricum (Fabaceae) using reserve globulin seeds, Bot. Zh., 2004, vol. 89, no. 10, pp. 1637–1645.

    Google Scholar 

  5. Agafonova, O.V. and Karnaukhova, N.A., Antecology and prediction of pollination type by electrophoretic spectra of seed polypeptides in rare populations species Hedysarum theinum, growing in Mountain Altai, Rastit. Mir Aziat. Ross., 2008, no. 1, pp. 54–59.

  6. Anderson, J.T. and Mitchell-Olds, T., Ecological genetics and genomics of plant defenses: evidence and approaches, Funct. Ecol., 2011, vol. 25, no. 2, pp. 312–324.

    PubMed  PubMed Central  Google Scholar 

  7. Anderson, J.T., Willis, J.H., and Mitchell-Olds, T., Evolutionary genetics of plant adaptation, Trends Genet., 2011, vol. 27, no. 7, pp. 258–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Andersson, M.S., Fuquen, E.M., and de Vicente, M.C., State of the art of DNA storage: results of a worldwide survey, in DNA Banks: Providing Novel Options for Genebanks? de Vicente, M.C. and Andersson, M.S., Eds., Rome: Int. Plant Genet. Resour. Inst., 2006, pp. 6–11.

    Google Scholar 

  9. Arif, I.A., Bakir, M.A., Khan, H.A., Farhan, A.H., Homaidan, A.A., Bahkali, A.H., Sadoon, M., and Shobrak, M., A brief review of molecular techniques to assess plant diversity, Int. J. Mol. Sci., 2010, vol. 11, no. 5, pp. 2079–2096.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Asbaganov, S.V., Kobozeva, E.V., and Agafonov, A.V., Application of the electrophoresis of cotyledon storage protein and ISSR-markers to the identification of hybrids between Sorbus sibirica Hedl. and Sorbocotoneaster pozdnjakovii Pojark, Russ. J. Genet.: Appl. Res., 2015, vol. 5, no. 1, pp. 33–40.

    CAS  Google Scholar 

  11. Badaeva, E.D., Fisenko, A.V., Surzhikov, S.A., Yankovskaya, A.A., Chikida, N.N., Zoshchuk, S.A., Belousova, M.K., and Dragovich, A.Yu., Genetic heterogeneity of a diploid grass Aegilops tauschii revealed by chromosome banding methods and electrophoretic analysis of the seed storage proteins (gliadins), Russ. J. Genet., 2019a, vol. 55, no. 11, pp. 1315–1329.

    CAS  Google Scholar 

  12. Badaeva, E.D., Surzhikov, S.A., and Agafonov, A.V., Molecular-cytogenetic analysis of diploid wheatgrass Thinopyrum bessarabicum (Savul. and Rayss) A. Löve, Comp. Cytogenet., 2019b, vol. 13, no. 4, pp. 389–402.

    PubMed  PubMed Central  Google Scholar 

  13. Baranov, O.Yu., Kir’yanov, P.S., Panteleev, S.V., Mozharovskaya, L.V., Padutov, A.V., Razumova, O.A., and Padutov, V.E., Analysis of the structural and functional organization of the chloroplast genome of the Karelian birch based on data from high-performance sequencing, Dokl. Nats. Akad. Nauk Bel., 2019, vol. 63, no. 3, pp. 312–316.

    Google Scholar 

  14. Baum, B.R., Yang, J.-L., Yen, C., and Agafonov, A.V., A taxonomic revision of the genus Campeiostachys Drobov, J. Syst. Evol., 2011, vol. 49, no. 2, pp. 146–159.

    Google Scholar 

  15. Bonnet, J., Colotte, M., Coudy, D., Couallier, V., Portier, J., Morin, B., and Tuffet, S., Chain and conformation stability of solid-state DNA: implications for room temperature storage, Nucleic Acids Res., 2010, vol. 38, no. 5, pp. 1531–1546.

    CAS  PubMed  Google Scholar 

  16. Boronnikova, S.V., Genetic certification of populations of rare species of the genus Adonis using ISSR- and IRAP-markers, Izv. Timiryazevsk. S-kh. Akad., 2009, no. 1, pp. 82–88.

  17. Boronnikova, S.V. and Boboshina, I.V., RF Patent 2505956, 2013.

  18. Botstein, D., White, R.L., Scolnick, M., and Davis, R.W., Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 1980, vol. 32, pp. 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown, W., Invest in a DNA bank for all species, Nature, 2011, vol. 476, p. 399.

    CAS  PubMed  Google Scholar 

  20. Chen, L., Chen, F., He, S., and Ma, L., High genetic diversity and small genetic variation among populations of Magnolia wufengensis (Magnoliaceae), revealed by ISSR and SRAP markers, Electron. J. Biotechnol., 2014, vol. 17, pp. 268–274.

    CAS  Google Scholar 

  21. Dewey, D.R., Genomic and phylogenetic relationships among North American Triticeae grasses, in Grasses and Grasslands, Estes, J.E., , Eds., Norman, OK: Univ. of Oklahoma Press, 1984, pp. 51–80.

    Google Scholar 

  22. DNA banks and genetic resources repositories in the United States. https://www.idigbio.org/genetic-resources. Accessed December, 2019.

  23. Dulloo, E., Nagamura, Y., and Ryder, O., DNA storage as a complementary conservation strategy, in DNA Banks: Providing Novel Options for Genebanks? de Vicente, M.C. and Andersson, M.S., Eds., Rome: Int. Plant Genet. Resour. Inst., 2006, pp. 12–22.

    Google Scholar 

  24. D’yachenko, E.A., Filyushin, M.A., Pronina, E.P., and Kochieva, E.Z., Variability of the trnL plastid gene’s intron in the Faboideae species (Fabaceae), Russ. J. Genet. Appl. Res., 2015, vol. 5, no. 3, pp. 220–226.

    Google Scholar 

  25. Eggi, E.E. and Potokina, E.K., IS this cross- or self-pollinated plant? Electrophoretic separation of seed polypeptides to determine the pollination type in legumes, Bot. Zh., 1998, vol. 83, no. 12, pp. 77–83.

    Google Scholar 

  26. Erst, A.A., Zvyagina, N.S., Novikova, T.I., and Dorogina, O.V., Clonal micropropagation of a rare species Hedysarum theinum Krasnob. (Fabaceae) and assessment of the genetic stability of regenerated plants using ISSR markers, Russ. J. Genet., 2015, vol. 51, no. 2, pp. 158–162.

    CAS  Google Scholar 

  27. Esimbekova, M.A., Bulatova, K.M., Kushanova, R.Zh., and Mukin, K.B., Biodiversity of wild species of genus Aegilops L. in Kazakhstan for wheat breeding, Izv. Timiryazevsk. S-kh. Akad., 2015, no. 6, pp. 5–17.

  28. Flores-Olvera, H., Zumaya, S., and Borsch, T., Two new species of Iresine (Amaranthaceae: Gomphrenoideae) from Mexico supported by morphological and molecular characters, Willdenowia, 2016, vol. 46, pp. 165–174.

    Google Scholar 

  29. Gaál, E., Valárik, M., Molnár, I., Farkas, A., and Linc, G., Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes, PLoS One, 2018, vol. 1, p. e0208840.

    Google Scholar 

  30. Gaskin, J.F., The role of hybridization in facilitating tree invasion, AoB Plants, 2016, vol. 9, no. 1, art. ID plw079.

    PubMed Central  Google Scholar 

  31. Gantait, S., Debnath, S., and Nasim, A.M., Genomic profile of the plants with pharmaceutical value, 3 Biotech, 2014, vol. 4, no. 6, pp. 563–578.

  32. Gemeinholzer, B., Rey, I., Weising, K., Grundmann, M., Muellner, A.N., Zetzsche, H., Droege, G., Seberg, O., Petersen, G., Rawson, D., and Weigt, L., Organizing specimen and tissue preservation in the field for subsequent molecular analyses, in Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories, Eymann, J., Degreef, J., Hauser, C., Monje, J.C., Samyn, Y., and VandenSpiegel, D., Eds., Edgewater: ABCTaxa, 2010.

  33. Gordon, S.P., Sloop, C.M., Davis, H.G., and Cushman, J.H., Population genetic diversity and structure of two rare vernal pool grasses in central California, Conserv. Genet., 2012, vol. 13, pp. 117–130.

    Google Scholar 

  34. Grigoreva, E., Ulianich, P., Ben, C., Gentzbittel, L., and Potokina, E., First insights into the guar (Cyamopsis tetragonoloba (L.) Taub.) genome of the ‘Vavilovskij 130’ accession, using second and third-generation sequencing technologies, Russ. J. Genet., 2019, vol. 55, no. 11, pp. 1406–1416.

    CAS  Google Scholar 

  35. Gubareva, N.K., Gavrilyuk, I.P., and Konarev, A.V., Identification of crop varieties by electrophoretic spectra of storage proteins, Agrar. Ross., 2015, no. 11, pp. 21–27.

  36. Gustafson, D.J. and Gibson, A., Genetic Considerations in Plant Ecological Restoration, Oxford: Oxford Univ. Press, 2019.

    Google Scholar 

  37. Hamouda, M., Molecular analysis of genetic diversity in population of Silybum marianum (L.) Gaertn in Egypt, J. Genet. Eng. Biotechnol., 2019, vol. 17, no. 1, p. 12.

    PubMed  PubMed Central  Google Scholar 

  38. Ivetić, V., Devetaković, J., Nonić, M., Stanković, D., and Šijačić-Nikolić, M., Genetic diversity and forest reproductive material—from seed source selection to planting, iForest, 2016, vol. 9, no. 5, pp. 801–812.

    Google Scholar 

  39. Jaccoud, D., Peng, K., Feinstein, D., and Kilian, A., Diversity arrays: a solid state technology for sequence information independent genotyping, Nucleic Acids Res., 2001, vol. 29, p. e25

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeffreys, A.J., Wilson, V., and Thein, S.L., Hypervariable ‘minisatellite’ regions in human DNA, Nature, 1985, vol. 314, pp. 67–73.

    CAS  PubMed  Google Scholar 

  41. Jensen, K.B., Cytology, fertility and morphology of Elymus kengii (KENG) Tzvel and E. grandiglumis (KENG) A. Love (Triticeae: Poaceae), Genome, 1990, vol. 33, pp. 563–570.

    Google Scholar 

  42. Jump, A.S. and Peñuelas, J., Genetic effects of chronic habitat fragmentation in a wind-pollinated tree, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 8096–8100.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kalaev, V.N., Zemlyanukhina, O.A., Karpechenko, I.Yu., Karpechenko, K.A., Kondrat’eva, A.M., Veprintsev, V.N., Karpechenko, N.A., Karpova, S.S., Moiseeva, E.V., and Baranova, T.V., Molecular-genetic analysis for study of DNA polymorphism of the plants of genus Rhododendron for their certification, Fundam. Issled., 2012, no. 6 (2), pp. 323–328.

  44. Kalendar, R. and Schulman, A.H., IRAP and REMAP for retrotransposon-based genotyping and fingerprinting, Nat. Protoc., 2006, vol. 1, pp. 2478–2484.

    CAS  PubMed  Google Scholar 

  45. Kalendar, R. Flavell, A.J., Ellis, T.H., Sjakste, T., Moisy, C., and Schulman, A.H., Analysis of plant diversity with retrotransposon-based molecular markers, Heredity, 2011, vol. 106, no. 4, pp. 520–530.

    CAS  PubMed  Google Scholar 

  46. Kaljund, K. and Jaaska, V., No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcata,Biochem. Syst. Ecol., 2010, vol. 38, pp. 510–520.

    CAS  Google Scholar 

  47. Karık, Ü., Nadeem, M.A., Habyarimana, E., Ercişli, S., Yildiz, M., Yılmaz, A., Yang, S.H., Chung, G., and Faheem, S.B., Exploring the genetic diversity and population structure of Turkish laurel germplasm by the iPBS-retrotransposon marker system, Agronomy, 2019, vol. 9, no. 10, p. 647.

    Google Scholar 

  48. Khlestkina, E.K., Molecular methods for analyzing the structure-function organization of genes and genomes in higher plants, Russ. J. Genet.: Appl. Res., 2012, vol. 2, no. 3, pp. 243–251.

    Google Scholar 

  49. Kim, J.S., Ahn, S.G., Kim, C.K., and Shim, C.K., Screening of rice blast resistance genes from aromatic rice germplasms with SNP markers, Plant Pathol. J., 2010, vol. 26, pp. 70–79.

    CAS  Google Scholar 

  50. Kloet de, A.H., Kerski, A., and de Kloet, S.R., Diagnosis of avian bornavirus infection in psittaciformes by serum antibody detection and reverse transcription polymerase chain reaction assay using feather calami, J. Vet. Diagn. Invest., 2011, vol. 23, no. 3, pp. 421–429.

    Google Scholar 

  51. Knyazev, M.S., New hybrid species Hedysarum from Eastern Europe, Bot. Zh., 2011, vol. 96, no. 8, pp. 1122–1126.

    Google Scholar 

  52. Konarev, A.V., Tsikalo, N.V., and Zhirov, E.G., Analysis of genome composition of amphidiploids for grain proteins, Byull. Vseross. Inst. Rastenievod., 1985, no. 149, pp. 751–757.

  53. Konieczny, A. and Ausubel, F.M., A procedure for mapping Arabidopsis mutations using co-dominant ecotypespecific PCR-based markers, Plant J., 1993, vol. 4, pp. 403–410.

    CAS  PubMed  Google Scholar 

  54. LaBar, T. and Adami, C., Different evolutionary paths to complexity for small and large populations of digital organisms, PLoS Comput. Biol., 2016, vol. 12, no. 12, p. e1005066.

    PubMed  PubMed Central  Google Scholar 

  55. Li, Y.Y., Guan, S.M., Yang, S.Z., Luo, Y., and Chen, X.Y., Genetic decline and inbreeding depression in an extremely rare tree, Conserv. Genet., 2012, vol. 13, pp. 343–347.

    Google Scholar 

  56. Liu, L., Chen, W., Zheng, X., Li, J., Yan, D.-T., Liu, L., Liu, X., and Wang, Y.-L., Genetic diversity of Ulmus lamellosa by morphological traits and sequence-related amplified polymorphism (SRAP) markers, Biochem. Syst. Ecol., 2016, vol. 66, pp. 272–280.

    CAS  Google Scholar 

  57. Lopes, M.S., Mendonça, D., Bettencourt, S.X., Borba, A.R., Melo, C., Baptista, C., and da Câmara Machado, A., Genetic diversity of an Azorean endemic and endangered plant species inferred from inter-simple sequence repeat markers, AoB Plants, 2014, vol. 6, art. ID plu034.

    PubMed  PubMed Central  Google Scholar 

  58. Mahelka, V., Kopecky, D., and Baum, B.R., Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae), Mol. Biol. Evol., 2013, vol. 30, no. 9, pp. 2065–2086.

    CAS  PubMed  Google Scholar 

  59. Marghali, S., Zitouna, N., Gharbi, M., Chennaoui-Kourda, H., and Trifi-Farah, N., Evaluation of genetic diversity in Sulla coronaria from different geographical populations in Tunisia by inter simple sequence repeat (ISSR), Afr. J. Biotechnol., 2012, vol. 11, pp. 12158–12166.

    CAS  Google Scholar 

  60. Maschinskia, J. and Matthew, A.A., Center for plant conservation’s best practice guidelines for the reintroduction of rare plants, Plant Diversity, 2017, vol. 39, no. 6, pp. 390–395.

    Google Scholar 

  61. McCouch, S.R., Zhao, K., Wright, M., Tung, C.W., Ebana, K., Thomson, M., and McClung, A., Development of genome wide SNP assays for rice, Breeding Sci., 2010, vol. 60, no. 5, pp. 524–535.

    Google Scholar 

  62. Milyutina, T.N., Sheikina, O.V., and Novikov, P.S., Molecular-genetic study of clone variability of plus trees Pinus sylvestris by ISSR-markers, Khvoinye Boreal’noi Zony, 2013, vol. 31, nos. 1–2, pp. 102–105.

    Google Scholar 

  63. Missouri Botanical Garden DNA bank. https://www.missouribotanicalgarden.org/plant-science/plant-science/ william-l-brown-center/wlbc-resources/wlbc-databases/ dna-bank.aspx. Accessed December, 2019.

  64. Muraseva, D.S., Zvyagina, N.S., Novikova, T.I., and Dorogina, O.V., Conservation of endemic of Western Sayan Fritillaria sonnikovae Schaulo et A. Erst (Liliaceae) in collection in vitro, Vavilovskii Zh. Genet. Sel., 2017, vol. 21, pp. 554–560.

    Google Scholar 

  65. Naeem, R., Molecular markers in plant genotyping, J. Bio-Mol.Sci., 2014, vol. 2, no. 3, pp. 78–85.

    Google Scholar 

  66. Neale, J.R., Genetic considerations in rare plant reintroduction: practical application (or how are we doing?), in Plant Reintroduction in a Changing Climate: Promises and Perils, Maschinski, J. and Haskins, K.E., Eds., Washington: Island Press, 2012, pp. 71–88.

    Google Scholar 

  67. Noreen, A.M.E. and Webb, E.L., High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss, PloS One, 2013, vol. 8, no. 12, art. ID 82632.

    Google Scholar 

  68. Olson, M., Hood, L., Cantor, C., and Dotstein, D., A common language for physical mapping of the human genome, Science, 1989, vol. 245, pp. 1434–1435.

    CAS  PubMed  Google Scholar 

  69. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T., Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 2766–2770.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Paran, I. and Michelmore, R.W., Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce, Theor. Appl. Genet., 1993, vol. 85, pp. 985–993.

    CAS  PubMed  Google Scholar 

  71. Parker, J., Helmstetter, A.J., Devey, D., Wilkinson, T., and Papadopulos, A.S., Field-based species identification of closely-related plants using real-time nanopore sequencing, Sci. Rep., 2017, vol. 7, no. 1, p. 8345. https:// www.nature.com/articles/s41598-017-08461-5. Accessed December, 2019.

    PubMed  PubMed Central  Google Scholar 

  72. Plant DNA bank in Korea: http://pdbk.korea.ac.kr/. Accessed December, 2019.

  73. Pomortsev, A.A., Rubanovich, A.V., Kovaleva, O.N., and Lyalina, E.V., Allelic diversity of Hrd A and Hrd B hordein-coding loci in wild (Hordeum spontaneum C. Koch) and cultivated (Hordeum vulgare L.) barley from Israel and Palestine, Russ. J. Genet., 2019, vol. 55, no. 11, pp. 1347–1359.

    CAS  Google Scholar 

  74. Rice, N., Cordeiro, G., Shepherd, M., Bundock, P., Bradbury, L., Pacey-Miller, T., Furtado, A., and Henry, R., DNA Banks and their role in facilitating the application of genomics to plant germplasm, Plant Genet. Resour., 2006, vol. 4, no. 1, pp. 64–70.

    CAS  Google Scholar 

  75. Rose, L.A., Bernatchez, L., Bonin, A., Buerkle, C.A., Carstens, B.C., Emerson, B.C., Garant, D., Giraud, T., Kane, N.C., Rogers, S.M., Slate, J., Smith, H., Sork, V.L., Stone, G.N., Vines, T.H., et al., Invited reviews and meta-analyses. A road map for molecular ecology, Mol. Ecol., 2013, vol. 22, pp. 2605–2626.

    Google Scholar 

  76. Särkinen, T.E., Marcelo-Peña, J.L., Yomona, A.D., Simon, M.F. Pennington, T.P., and Hughes, C.E., Underestimated endemic species diversity in the dry inter-Andean valley of the Rio Maranon, northern Peru: an example from Mimosa (Leguminosae, Mimosoideae), Taxon, 2011, vol. 60, no. 1, pp. 139–150.

    Google Scholar 

  77. Shilkina, E.A., Use of genetic methods in monitoring of Siberian forests, LPK Sib., 2017, no. 4. https://lpk-sibiri.ru/ forest-management/protection-of-forests/geneticheskie-metody-v-monitoringe-sibirskih-lesov/.

  78. Shmakov, N.A., Afonnikov, D.A., Belavin, P.A., and Agafonov, A.V., The suitability of the BMY2 and WAXY genes and internal transcribed spacers of RRNA as markers for studying genetic variability in Elymus species, Russ. J. Genet.: Appl. Res., 2015, vol. 5, no. 3, pp. 300–307.

    CAS  Google Scholar 

  79. Shneyer, V.S. and Kotseruba, V.V., Cryptic species in plants and their detection by genetic differentiation between populations, Russ. J. Genet.: Appl. Res., 2015, vol. 5, no. 5, pp. 528–541.

    Google Scholar 

  80. Skaptsov, M.V., Belkin, D.L., Smirnov, S.V., and Kutsev, M.G., Somaclonal variability of the British yellowhead Inula britannica L. in vitro culture, Turczaninovia, 2015, vol. 18, no. 4, pp. 41–48.

    Google Scholar 

  81. Stegemann, S., Keuthe, M., Greiner, S., and Bock, R., Horizontal transfer of chloroplast genomes between plant species, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 7, pp. 2434–2438.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tarverdyan, A.P., Melikyan, A.Sh., Arutyunyan, M.G., and Oganesyan, M.Ts., The gene pool of wild species of grain crops of Armenia as a means for creation of new productive varieties, Izv. Timiryazevsk. S-kh. Akad., 2013, no. 1, pp. 71–78.

  83. Tautz, D. and Renz, M., Simple sequences are ubiquitous repetitive components of eukaryotic genomes, Nucleic Acids Res., 1984, vol. 12, pp. 4127–4138.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. The DNA and tissue bank at Kew. http://data. kew.org/dnabank/homepage.html. Accessed December, 2019.

  85. The DNA bank of the Botanic Garden and Botanical Museum Berlin (BGBM). https://www.bgbm.org/en/dna-bank. Accessed December, 2019.

  86. The DNA bank of the Natural History Museum of Oslo (NHMO. https://www.nhm.uio.no/english/research/i nfrastructure/dna-bank/. view accessed: 01.2020.

  87. The top 10 plant genome databases. http://www.global-engage.com/agricultural-biotechnology/best-plant-genome-database/. Accessed December, 2019.

  88. Torabinejad, J. and Mueller, R.J., Genome constitution of the Australian hexaploid grass, Elymus scabrous (Poaceae: Triticeae), Genome, 1993, vol. 36, pp. 147–151.

    CAS  PubMed  Google Scholar 

  89. Vishnyakova, M.A. and Goncharov, N.P., Institutionalization of genetics and distant plant hybridization at the Vavilov Research Institute of Plant Industry in 1920–1930, Genetika, 2019, vol. 55, no. 11, pp. 1241–1252.

    Google Scholar 

  90. Volkova, N.E., DNA banks for saving genetic resources: a review, Sortovivchennya Okhor. Prav Sorti Rosl., 2016, no. 4 (33), pp. 33–38.

  91. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee van de, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., and Kuiper, M., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res., 1995, vol. 23, pp. 4407–4414.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, D.G., Fan, J.B., Siao, C.J., Berno, A., Young, P., Sapolsky, R., Ghandour, G., Perkins, N., Winchester, E., Spencer, J., Kruglyak, L., Stein, L., Hsie, L., Topaloglou, T., Hubbell, E., et al., Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome, Science, 1998, vol. 280, pp. 1077–1082.

    CAS  PubMed  Google Scholar 

  93. Waugh, R., McLean, K., Flavell, A.J., Pearce, S.R., Kumar, A., Thomas, B.B., and Powell, W., Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP), Mol. Gen. Genet., 1997, vol. 253, pp. 687–694.

    CAS  PubMed  Google Scholar 

  94. Welsh, J., Chada, K., Dalal, S.S., Cheng, R., Ralph, D., and McClelland, M., Arbitrarily primed PCR fingerprinting of RNA, Nucleic Acids Res., 1992, vol. 20, pp. 4965–4970.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res., 1990, vol. 18, pp. 6531–6535

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Willi, Y., Buskirk, J.V., and Hoffmann, A.A., Limits to the adaptive potential of small populations, Annu. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 433–458.

    Google Scholar 

  97. World database on key biodiversity areas. https://www.iucn. org/resources/conservation-tools/world-database-on-key-biodiversity-areas. Accessed December, 2019

  98. Zhang, W., Zhang, R., Feng, Y., Bie, T., and Chen, P., Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin, Chin. Sci. Bull., 2013, vol. 58, no. 8, pp. 890–897.

    CAS  Google Scholar 

  99. Zhao, X.F., Ma, Y.P., Sun, W.B., Wen, X., and Milne, R., High genetic diversity and low differentiation of Michelia coriacea (Magnoliaceae), a critically endangered endemic in southeast Yunnan, China, Int. J. Mol. Sci., 2012, vol. 13, pp. 4396–4411.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhmud, E.V., Elisafenko, T.V., Krivenko, D.A., Verkhozina, A.V., Zvyagina, N.S., and Dorogina, O.V., Cenopopulations of Astragalus sericeocanus (Fabaceae)—endemic of the eastern coast of the Lake Baikal, Bot. Zh., 2012, vol. 97, no. 10, pp. 1310–1320.

    Google Scholar 

  101. Zhuchenko, A.A., Ekologicheskaya genetika kul’turnykh rastenii i problemy agrosfery (teoriya i praktika). Monografiya (Ecological Genetics of Cultured Plants and Agricultural Industry: Theory and Practice. Monograph), Moscow: Agrorus, 2004, vol. 1.

  102. Zietkiewicz, E., Rafalski, A., and Labuda, D., Genome finger- printing by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 1994, vol. 20, pp. 176–183.

    CAS  PubMed  Google Scholar 

  103. Zvyagina, N.S. and Dorogina, O.V., Genetic differentiation of Altai-Sayan endemic Hedysarum theinum Krasnob. (Fabaceae) evaluated by inter-simple sequence repeat analysis, Russ. J. Genet., 2013, vol. 49, no. 10, pp. 1030–1035.

    CAS  Google Scholar 

  104. Zvyagina (Nuzhdina), N.S., Dorogina, O.V., and Catalan, P., Genetic relatedness and taxonomy in closely related species of Hedysarum (Fabaceae), Biochem. Syst. Ecol., 2016, vol. 69, pp. 176–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dorogina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorogina, O.V., Zhmud, E.V. Molecular-Genetic Methods in Plant Ecology. Contemp. Probl. Ecol. 13, 333–345 (2020). https://doi.org/10.1134/S1995425520040058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520040058

Keywords:

Navigation