Skip to main content
Log in

Decreased Evolutionary Plasticity as a Result of Phylogenetic Immobilization and Its Ecological Significance

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract—

This review addresses the phylogenetic immobilization phenomenon first described by I.I. Schmalhausen: decreased evolutionary plasticity as a result of stabilizing selection and deleterious mutations with habitat-specific fitness effects. Examples of immobilization are examined and their classification proposed. The role of environmental stability and morphological conservatism in the immobilization development is assessed. The applicability of the immobilization concept for the solution of evolutionary theory issues and the possibility of using immobilization for breeding purposes and the conservation of taxa with low evolutionary plasticity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale, G., and Harmon, L.J., Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 13410–13414.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003, 3rd ed.

  3. Amemiya, C.T., Powers, T.P., Prohaska, S.J., Grimwood, J., Schmutz, J., Dickson, M., Miyake, T., Schoenborn, M.A., Myers, R.M., Ruddle, F.H., and Stadler, P.F., Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 3622–3627.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Amemiya, C.T., et al., The African coelacanth genome provides insights into tetrapod evolution, Nature, 2013, vol. 496, pp. 311–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Artamonova, V.S. and Makhrov, A.A., Unintentional genetic processes in artificially maintained populations: proving the leading role of selection in evolution, Russ. J. Genet., 2006, vol. 42, no. 3, pp. 234–246.

    Article  CAS  Google Scholar 

  6. Artamonova, V.S. and Makhrov, A.A., Genetic systems as the regulators of adaptation and speciation processes: theory of microevolution, Trudy konferentsii posvyashchennoi 100-letiyu Gosudarstvennogo Darvinovskogo muzeya “Sovremennye problemy biologicheskoi evolyutsii,” g. Moskva, 17–20 sentyabrya 2007 g. (Proc. Conf. Dedicated to the 100 Anniversary of the State Darwinian Museum “Modern Problems in Biological Evolution,” Moscow, September 17–20, 2007), Moscow, 2008, pp. 381–403.

  7. Artamonova, V.S. and Makhrov, A.A., Evolution processes in modern populations, Materialy VIII nauchno-prakticheskoi shkoly dlya molodykh uchenykh i aspirantov po problemam molekulyarnoi ekologii i evolyutsii “Ispol’zovanie molekulyarno-geneticheskikh metodov v issledovaniyakh vodnykh ekosistem i okhrany zdorov’ya cheloveka,” Borok, 25–31 oktyabrya 2015 g. (Proc. VIII Sci.-Pract. School for Young Scientists and Post-Graduate Students on the Molecular Ecology and Evolution “Use of Molecular-Genetic Methods in the Studies of Aquatic Ecosystems and Human Health Protection,” Borok, October 25–31, 2015), Kostroma, 2015, pp. 36–55.

  8. Artamonova, V.S. and Makhrov, A.A., The influence of genotype on habitat selection of fish and the analysis of population structure, Knowl. Manage. Aquat. Ecosyst., 2016, vol. 417, no. 3.

  9. Artamonova, V.S., Yankovskaya, V.A., Golod, V.M., and Makhrov, A.A., Genetic differentiation of the rainbow trout (Parasalmo mykiss) breeds farming in Russian Federation, Tr. Inst. Biol. Vnutr. Vod im. I.D. Papanina, Ross. Akad. Nauk, 2016, no. 73, pp. 25–45.

  10. Artamonova, V.S., Kolmakova, O.V., Kirillova, E.A., and Makhrov, A.A., Phylogeny of salmonoid fishes (Salmonoidei) based on mtDNA COI gene sequences (barcoding), Contemp. Probl. Ecol., 2018, vol. 11, pp. 271–285.

  11. Artyukhin, E.N., Osetrovye (ekologiya, geograficheskoe rasprostranenie i filogeniya) (Sturgeons: Ecology, Geographic Distribution, and Phylogeny), St. Petersburg: S.-Peterb. Gos. Univ., 2008.

  12. Avise, J.C., Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals, Oxford: Oxford Univ. Press, 2008.

    Book  Google Scholar 

  13. Ayala, F.J., Hedgecock, D., Zumwalt, G.S., and Valentine, J.W., Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages, Evolution, 1973, vol. 27, pp. 177–191.

    PubMed  Google Scholar 

  14. Bakhvalova, A.E., Ivanova, T.S., Ivanov, M.V., Demchuk, A.S., Movchan, E.A., and Lajus, D.L., Long-term changes in the role of threespine stickleback (Gasterosteus aculeatus) in the White Sea: predatory fish consumption reflects fluctuating stickleback abundance during the last century, Evol. Ecol. Res., 2016, vol. 17, pp. 317–334.

    Google Scholar 

  15. Balashov, D.A., Recoubratsky, A.V., Duma, L.N., Ivanekha, E.V., and Duma, V.V., Fertility of triploid hybrids of Prussian carp (Carassius gibelio) with common carp (Cyprinus carpio L.), Russ. J. Dev. Biol., 2017, vol. 48, no. 5, pp. 347–353.

    Article  Google Scholar 

  16. Bateman, K.G., The genetic assimilation of four venation phenocopies, J. Genet., 1959, vol. 56, pp. 443–474.

    Article  Google Scholar 

  17. Bauer, G., Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera, J. Anim. Ecol., 1987, vol. 56, pp. 691–704.

    Article  Google Scholar 

  18. Beamish, R.J., Freshwater parasitic lamprey on Vancouver Island and a theory of the evolution of the freshwater parasitic and nonparasitic life history types, in Evolutionary Biology of Primitive Fishes, Foreman, R.E., Gorbman, A., Dodd, J.M., and Olsson, R., Eds., New York: Plenum, 1985, pp. 123–140.

    Google Scholar 

  19. Bennett, D.J., Sutton, M.D., and Turvey, S.T., Quantifying the living fossil concept, Palaeontol. Electron., 2018, art. ID 21.1.14A.

  20. Birshtein, Ya.A., Definition “a relict” in biology, Zool. Zh., 1947, vol. 26, no. 4, pp. 313–330.

    Google Scholar 

  21. Bolotov, I.N., Bespalaya, Yu.V., and Usacheva, O.V., Ecology and evolution of hydrobionts in hot springs of the subarctic and arctic: formation of similar assemblages, adaptation of species, and microevolutionary processes, Biol. Bull. Rev., 2012, vol. 2, no. 4, pp. 340–348.

    Article  Google Scholar 

  22. Bolotov, I.N., Vikhrev, I.V., Aksenova, O.V., Bespalaya, Yu.V., Gofarov, M.Y., Kondakov, A.V., and Sokolova, S.E., Discovery and natural history of the mussel leech Batracobdella kasmiana (Oka, 1910) (Hirudinida: Glossiphoniidae) in Russia, Zootaxa, 2015, vol. 4319, pp. 386–390.

    Article  Google Scholar 

  23. Bolotov, I.N., Aksenova, O.V., Bespalaya, Yu.V., and Spitsyn, V.M., Endemism of freshwater fishe fauna in geothermal regions: a review of molecular-biogeographic studies, Vestn. Sev. (Arkt.) Fed. Univ., Ser.: Estestv. Nauki, 2016a, no. 1, pp. 29–50.

  24. Bolotov, I.N., Vikhrev, I.V., Bespalaya Yu.V., Gofarov, M.Y., Kondakov, A.V., Konopleva, E.S., Bolotov, N.N., and Lyubas, A.A., Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida), Mol. Phylogenet. Evol., 2016b, vol. 103, pp. 104–121.

    Article  PubMed  Google Scholar 

  25. Bolotov, I.N., Aksenova, O.V., Bespalaya, Y.V., Gofarov, M.Y., Kondakov, A.V., Paltser, I.S., Stefansson, A., Travina, O.V., and Vinarski, M.V., Origin of a divergent mtDNA lineage of a freshwater snail species, Radix balthica, in Iceland: cryptic glacial refugia or a postglacial founder event? Hydrobiologia, 2017, vol. 787, pp. 73–98.

    Article  CAS  Google Scholar 

  26. Bolotov, I.N., Aksenova O.V., Bakken, T., Glasby, C.J., Gofarov, M.Yu., Kondakov, A.V., Konopleva, E.S., Lopes-Lima, M., Lyubas, A.A., Wang, Yu., Bychkov, A.Yu., Sokolova, A.M., Tanmuangpak, K., Tumpeesuwan, S., Vikhrev, I.V., et al., Discovery of a silicate rock-boring organism and macrobioerosion in fresh water, Nature, 2018, vol. 9, art. ID 2882.

    Google Scholar 

  27. Borovikova, E.A. and Malina, J.I., Phylogeography of common whitefish (Coregonus lavaretus L.) of Northwestern Russia, Contemp. Probl. Ecol., 2018, vol. 11, no. 3, pp. 286–296.

    Article  Google Scholar 

  28. Borovikova, E.A. and Makhrov, A.A., Adaptive capabilities of populations and the history of their formation: success in the resettlement of salmon-like fish depends on the size of the glacial refugia, Materialy mezhdunarodnoi konferentsii “Lyubishchevskie chteniya–2014,” Ul’yanovsk, 7–9 aprelya 2014 g. (Proc. Int. Conf. “Lyubishchev’s Readings–2014,” Ulyanovsk, April 7–9, 2014), Ulyanovsk, 2014, pp. 70–76.

  29. Carroll, S.P., Facing change: forms and foundations of contemporary adaptation to biotic invasions, Mol. Ecol., 2008, vol. 17, pp. 361–372.

    Article  PubMed  Google Scholar 

  30. Casane, D. and Laurenti, P., Why coelacanths are not ‘living fossils’: a review of molecular and morphological data, BioEssays, 2013, vol. 35, pp. 332–338.

    Article  PubMed  Google Scholar 

  31. Cavin, L. and Guinot, G., Coelacanths as “almost living fossils”, Front. Ecol. Evol., 2014, vol. 2, art. ID 49, pp. 1–5.

  32. Chadov, B.F., Chadova, E.V., Khotskina, E.A., Artemova, E.V., and Fedorova, N.B., The main effect of chromosomal rearrangement is changing the action of regulatory genes, Russ. J. Genet., 2004, vol. 40, no. 7, pp. 723–731.

    Article  CAS  Google Scholar 

  33. Chaikovskii, Yu.V., Avtopoez (Autopoiesis), Moscow: KMK, 2018.

    Google Scholar 

  34. Chalopin, D., Fan, S., Simakov, O., Meyer, A., Schartl, M., and Volff, J.N., Evolutionary active transposable elements in the genome of the coelacanth, J. Exp. Zool. B, 2014, vol. 322, pp. 322–333.

    Article  CAS  Google Scholar 

  35. Clarke, J.T., Lloyd, G.T., and Friedman, M., Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, pp. 11531–11536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Conrad, M., Adaptability: The Significance of Variability from Molecule to Ecosystems, New York: Plenum, 1983.

    Book  Google Scholar 

  37. Cooper, V.S. and Lenski, R.E., The population genetics of ecological specialization in evolving Escherichia coli populations, Nature, 2000, vol. 407, pp. 736–739.

    Article  CAS  PubMed  Google Scholar 

  38. Cox, G.W., Alien Species and Evolution, Washington: Island Press, 2004.

    Google Scholar 

  39. Crerar, L.D., Crerar, A.P., Domning, D.P., and Parsons, E.C.M., Rewriting the history of an extinction—was a population of Steller’s sea cows (Hydrodamalis gigas) at St Lawrence Island also driven to extinction? Biol. Lett., 2014, vol. 10, art. ID 20140878.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cuvier, M., Recherches sur les Ossemens Fossiles de Quadrupèdes, Paris: Chez Deterville, 1812, vol. 1.

    Google Scholar 

  41. Cuvier, G.M., Discours sur les Révolutions de la Surface du Globe: Et sur les Changements qu’Elles ont Produits dans le Règne Animal, Paris: Chez Ed. d’Ocagne, 1830.

  42. Darimont, C.T., Carlson, S.M., Kinnison, M.T., Paquet, P.C., Reimchen, T.E., and Wilmers, C.C., Human predators outpace other agents of trait change in the wild, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 952–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Darwin, C., On the Origin of Species by Means of Natural Selection, or the Preservation of Favored Races in the Struggle for Life, London: John Murray, 1859.

    Google Scholar 

  44. Davitashvili, L.Sh., Prichiny vymiraniya organizmov (Reasons of Extinction of Organisms), Moscow: Nauka, 1969.

  45. de Vries, H., Die Mutationen und die Mutationsperioden bei der Entstehung der Arten, Leipzig: Veit, 1901.

    Google Scholar 

  46. de Vries, H., Izbrannye proizvedeniya (Selected Research Works), Moscow: Medgiz, 1932.

  47. Dgebuadze, Yu.Yu., Ekologicheskie zakonomernosti izmenchivosti rosta ryb (Ecological Pattern of Growth Variability of Fishes), Moscow: Nauka, 2001.

  48. Eldredge, N., Unfinished Synthesis: Biological Hierarchies and Modern Evolutionary Thought, Oxford: Oxford Univ. Press, 1985.

    Google Scholar 

  49. Eldredge, N., Thompson, J.N., Brakefield, P.M., Gavrilets, S., Jablonski, D., Jackson, J.B.C., Lenski, R.E., Lieberman, B.S., McPeek, M.A., and Miller, W., III., The dynamics of evolutionary stasis, Paleobiology, 2005, vol. 31, pp. 133–145.

    Article  Google Scholar 

  50. Estes, S. and Arnold, S.J., Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales, Am. Nat., 2007, vol. 169, pp. 227–244.

    Article  PubMed  Google Scholar 

  51. Flegr, J., Frozen Evolution, Prague: Charles Univ. Prague, 2008.

    Google Scholar 

  52. Franks, S.J. and Hoffmann, A.A., Genetics of climate change adaptation, Annu. Rev. Genet., 2012, vol. 46, pp. 185–208.

    Article  CAS  PubMed  Google Scholar 

  53. Fryxell, P.A., The “relict species” concept, Acta Biotheor., 1962, vol. 15, pp. 105–118.

    Article  Google Scholar 

  54. Gauze, G.S., Ecology and some problems of species origin, in Ekologiya i evolyutsionnaya teoriya (Ecology and the Theory of Evolution), Leningrad: Nauka, 1984, pp. 5–105.

  55. Gilyarov, M.S., About “living fossils,” Zh. Obshch. Biol., 1985, vol. 46, no. 2, pp. 190–200.

    Google Scholar 

  56. Goldschmidt R., The Material Basis of Evolution, New Haven: Yale Univ. Press, 1940.

    Google Scholar 

  57. Gould, S.J., The Structure of Evolutionary Theory, Cambridge, MA: Harvard Univ. Press, 2002.

    Book  Google Scholar 

  58. Grandcolas, P., Nattier, R., and Trewick, S., Relict species: a relict concept? Trends Ecol. Evol., 2014, vol. 29, pp. 655–663.

    Article  PubMed  Google Scholar 

  59. Hall, A.R. and Colegrave, N., Decay of unused characters by selection and drift, J. Evol. Biol., 2008, vol. 21, pp. 610–617.

    Article  CAS  PubMed  Google Scholar 

  60. Haller, B.C. and Hendry, A.P., Solving the paradox of stasis: squashed stabilizing selection and the limits of detection, Evolution, 2013, vol. 68, pp. 483–500.

    Article  PubMed  Google Scholar 

  61. Hansen, T.F. and Houle, D., Evolvability, stabilizing selection, and the problem of stasis, in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes, Piglucci, M. and Preston, K., Eds., Oxford: Oxford Univ. Press, 2004, pp. 130–150.

    Google Scholar 

  62. Hay, J.M., Subramanian, S., Millar C.D., Mohandesan, E., and Lambert, D.M., Rapid molecular evolution in a living fossil, Trends Genet., 2008, vol. 24, pp. 106–109.

    Article  CAS  PubMed  Google Scholar 

  63. Henschel, J.R. and Seely, M.K., Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib Desert, Plant Ecol., 2000, vol. 150, pp. 7–26.

    Article  Google Scholar 

  64. Herrera-Flores, J.A., Stubbs, T.L., and Benton, M.J., Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology, 2017, vol. 60, pp. 319–328.

    Article  Google Scholar 

  65. Ivanov, M.F., New breed of pigs, Ukrainian white steppe bred in Askania-Nova biosphere reserve, in Polnoe sobranie sochinenii (Complete Collection of Research Works), Moscow: Kolos, 1964, vol. 5, pp. 182–195.

  66. Kafanov, A.I., Centers of origin and features of ecological evolution of cold-water malacofaunas of the Northern Hemisphere, Biol. Morya (Vladivostok), 1978, no. 1, pp. 3–9.

  67. Kalyakin, V.N., The secrets of the former distribution of the Steller’s sea cow, Priroda (Moscow), 2002, no. 6, pp. 6–12.

  68. Kaplan, J.M., The paradox of stasis and the nature of explanations in evolutionary biology, Phylos. Sci., 2009, vol. 76, pp. 797–808.

    Google Scholar 

  69. Kawecki, T.J., Sympatric speciation via habitat specialization driven by deleterious mutations, Evolution, 1997, vol. 51, pp. 1751–1763.

    Article  PubMed  Google Scholar 

  70. Khlebovich, V.V., Ekologiya osobi. Ocherki fenotipicheskikh adaptatsii zhivotnykh (Ecology of a Species: Description of Phenotypic Adaptations of the Animals), St. Petersburg: Zool. Inst., Ross. Akad. Nauk, 2012.

  71. Kin, A. and Błaźejowski, B., The horseshoe crab of the genus Limulus: living fossil or stabilomorph? PLoS One, 2014, vol. 9, no. 10, p. e108036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kirschner, M. and Gerhart, J., Evolvability, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 8420–8427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Klishko, O.K., The data on reproductive biology of bivalve mollusks (Margaritiferidae, Unionidae) and their relation with cyprinids (Cyprinidae) in reservoirs of Transbaikalia, Byull. Dal’nevost. Malakol. O-va, 2012, nos. 15–16, pp. 31–55.

  74. Kluge, N.J., Cladoendesis and a new look at the evolution of insect metamorphosis, Entomol. Rev., 2012, vol. 92, no. 6, pp. 622–632.

    Article  Google Scholar 

  75. Kolchinskii, E.I., Neokatastrofizm i selektsionizm: vechnaya dilemma ili vozmozhnost’ sinteza? (Istoriko-kriticheskie ocherki) (Neocatastrofism and Selectionism: The Eternal Dilemma or the Possibility of Synthesis? Historical-Critical Essays), St. Petersburg: Nauka, 2002.

  76. Kozhov, M.M., Distribution of modern Baikal fauna out of Baikal Lake, Tr. Karel. Fil., Akad. Nauk SSSR, 1956, no. 5, pp. 39–46.

  77. Krasnaya kniga Rossiiskoi Federatsii (zhivotnye) (The Red Data Book of Russian Federation: Animals), Moscow: AST-Astrel’, 2001.

  78. Kreslavskii, A.G., Sympatric speciation in animals: disruptive selection or ecological segregation? Zh. Obshch. B-iol., 1994, vol. 55, no. 4–5, pp. 404–419.

    Google Scholar 

  79. Krieger, J. and Fuerst, P.A., Evidence for a slowed rate of molecular evolution in the order Acipenseriformes, Mol. Biol. Evol., 2002, vol. 19, pp. 891–897.

    Article  CAS  PubMed  Google Scholar 

  80. Lahti, D.C., Johnson, N.A., Ajie, B.C., Otto, S.P., Hendry, A.P., Blumstein, D.T., Coss, R.G., Donohue, K., and Foster, S.A., Relaxed selection in the wild, Trends Ecol. Evol., 2009, vol. 24, pp. 487–496.

    Article  PubMed  Google Scholar 

  81. Lang, M., Hadzhiev, Y., Siegel, N., Amemiya, C.T., Parada, C., Strähle, U., Becker, M.-B., Müller, F., and Meyer A., Conservation of shh cis-regulatory architecture of the coelacanth is consistent with its ancestral phylogenetic position, EvoDevo, 2010, vol. 1, p. 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lem, S., The principle of destruction as a creative principle, Priroda (Moscow), 1987, no. 9, pp. 68–77.

  83. Levit, G.S. The roots of Evo-Devo in Russia: Is there a characteristic “Russian tradition”? Theory Biosci., 2007, vol. 126, pp. 131–148.

    Article  PubMed  Google Scholar 

  84. Living Fossils, Eldredge, N. and Stanley, S.M., Eds., New York: Springer-Verlag, 1984.

    Google Scholar 

  85. Lyubishchev, A.A., Problemy formy, sistematiki i evolyutsii organizmov (Problems of Shape, Systematics, and Evolution of Organisms), Moscow: Nauka, 1982.

  86. Madlung, A., Polyploidy and its effect on evolutionary success: old questions revisited with new tools, Heredity, 2013, vol. 110, pp. 99–104.

    Article  CAS  PubMed  Google Scholar 

  87. Makhrov, A.A., A narrowing of the phenotypic diversity range after large rearrangements of the karyotype in Salmonidae: The relationship between saltational genome rearrangements and gradual adaptive evolution, Genes, 2017, vol. 8, p. 297.

    Article  CAS  PubMed Central  Google Scholar 

  88. Makhrov, A.A. and Lajus, D.L., Postglacial colonization of the North European seas by Pacific fishes and lamprey, Contemp. Probl. Ecol., 2018, vol. 11, no. 3, pp. 247–258.

    Article  Google Scholar 

  89. Makhrov, A.A., Ponomareva, M.V., Khaimina, O.V., Gilepp, V.E., Efimova, O.V., Nechaeva, T.A., and Vasilenkova, T.I., Abnormal development of gonads of dwarf females and low survival of their offspring as the cause of rarity of resident populations of Atlantic salmon (Salmo salar L.), Russ. J. Dev. Biol., 2013a, vol. 44, no. 6, pp. 326–335.

    Article  CAS  Google Scholar 

  90. Makhrov, A.A., Kucheryavyy, A.V., and Savvaitova, K.A., Review on parasitic and non-parasitic forms of the Arctic lamprey Lethenteron camtschaticum (Petromyzontiformes, Petromyzontidae) in the Eurasian Arctic, J. Ichthyol., 2013b, vol. 53, pp. 944–958.

    Article  Google Scholar 

  91. Makhrov, A.A., Bolotov, I.N., and Artamonov, V.S., Ecological reasons and consequences of appearance of taxons with low adaptive potential by example of freshwater pearl mussels (Margaritifera), Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, 2016, no. 12, pp. 68–82.

  92. Mathers, T.C., Hammond, R.L., Jenner, R.A., Hanfling, B., and Gómez, A., Multiple global radiations in tadpole shrimps challenge the concept of ‘living fossils’, PeerJ, 2013, vol. 1, p. e62.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Matsuda, R., Animal Evolution in Changing Environments, with Special Reference to Abnormal Metamorphosis, New York: Wiley, 1987.

    Google Scholar 

  94. Meien, S.V., Geography of macroevolution of higher plants, Zh. Obshch. Biol., 1987, vol. 48, no. 3, pp. 291–309.

    Google Scholar 

  95. Merila, J., Sheldon, B.C., and Kruuk, L.E.B., Explaining stasis: microevolutionary studies in natural populations, Genetics, 2001, vols. 112–113, pp. 199–222.

    Google Scholar 

  96. Mina, M.V., Mikroevolyutsiya ryb. Evolyutsionnye aspekty feneticheskogo raznoobraziya (Microevolution of Fishes: Evolutionary Aspects of Phenetic Diversity), Moscow: Nauka, 1986.

  97. Mina, M.V., Evolutionary aspects of fishery studies, Tr. VNIRO, 2015, vol. 156, pp. 106–113.

    Google Scholar 

  98. Navashin, M.S. and Chuksanova, N.A., Number of chromosomes and evolution, Genetika, 1970, vol. 6, no. 4, pp. 71–83.

    Google Scholar 

  99. Naville, M., Chalopin, D., Casane, D., Laurenti, P., and Volff, J.N., The coelacanth: Can a “living fossil” have active transposable elements in its genome? Mobile Genet. Elem., 2015, vol. 5, pp. 55–59.

    Article  CAS  Google Scholar 

  100. Nazarov, V.I., Evolyutsiya ne po Darvinu: smena evolyutsionnoi modeli (Non-Darwinian Evolution: Change of Evolutionary Model), Moscow: KomKniga, 2005.

  101. Nikolsky, G., The interrelation between variability of characters, effectiveness of energy utilization, and karyotype structure in fishes, Evolution, 1976, vol. 30, pp. 180–185.

    Article  PubMed  Google Scholar 

  102. Nikol’skii, G.V., Struktura vida i zakonomernosti izmenchivosti ryb (Structure of a Species and Variability Pattern of Fishes), Moscow: Pishchevaya Prom-st’, 1980.

  103. Palumbi, S.R., Evolution Explosion. How Humans Cause Rapid Evolutionary Change, New York: W.W. Norton, 2001.

    Google Scholar 

  104. Pererva, V.I., Vozvrashchenie zubra (Bison Return), Moscow: Kolos, 1992.

  105. Popov, I.Yu., Aging of species: fact or illusion? Usp. Gerontol., 2008, vol. 21, no. 2, pp. 181–194.

    Google Scholar 

  106. Popov, I., Orthogenesis Versus Darwinism, New York: Springer-Verlag, 2018.

    Book  Google Scholar 

  107. Qumsiyeh, M.B., Evolution of number and morphology of mammalian chromosomes, J. Hered., 1994, vol. 85, pp. 455–465.

    Article  CAS  PubMed  Google Scholar 

  108. Rasnitsyn, A.P., Evolution rates and evolutionary theory: adaptive compromise hypothesis, in Evolyutsiya i biotsenoticheskie krizisy (Evolution and Biocenotic Crisis), Tatarinov, L.P. and Rasnitsyn, A.P., Eds., Moscow: Nauka, 1987, pp. 46–64.

  109. Rasnitsyn, A.P., Popular epigenetic evolution, Invertebr. Zool., 2015, vol. 12, no. 1, pp. 103–108.

    Article  Google Scholar 

  110. Relict Species. Phylogeography and Conservation Biology, Habel, J.C. and Assmann, T., Eds., Dordrecht: Springer-Verlag, 2010.

    Google Scholar 

  111. Rétaux, S. and Casane, D., Evolution of eye development in the darkness of caves: adaptation, drift, or both? EvoDevo, 2013, vol. 4, p. 26

    Article  PubMed  PubMed Central  Google Scholar 

  112. Reznick, D., Rodd, H., and Nunney, L., Empirical evidence for rapid evolution, in Evolutionary Conservation Biology, Ferriere, R., Dieckmann, U., and Couvet, D., Eds., Cambridge: Cambridge Univ. Press, 2004, pp. 101–118.

    Google Scholar 

  113. Rodendorf, B.B., Phylogenic relicts, Tr. Inst. Morfol. Zhivotn. im. A.N. Severtsova, 1959, no. 27, pp. 41–51.

  114. Rollinson, N. and Rowe, L., Persistent directional selection on body size and a resolution to the paradox of stasis, Evolution, 2015, vol. 69. p. 2441–2451.

    Article  PubMed  Google Scholar 

  115. Royer, D.L., Hickey, L.J., and Wing, S.L., Ecological conservatism in the “living fossil” Ginkgo, Paleobiology, 2003, vol. 29, pp. 84–104.

    Article  Google Scholar 

  116. Rubtsov, I.A., Irregular temp of evolution, Zh. Obshch. Biol., 1945, vol. 6, no. 6, pp. 411–441.

    Google Scholar 

  117. Savinetskii, A.B., Century dynamics of population of mammals and birds of the coast and islands of the Bering Sea over last thousand years, Doctoral (Biol.) Disseration, Moscow: Inst. Ecol. Evol., Russ. Acad. Sci., 2000.

    Google Scholar 

  118. Savinov, A.B., Activity of living organisms as a factor of their ontogenesis and evolution, Materialy XXX Lyubishchevskie chteniya “Sovremennye problemy ekologii i evolyutsii” (Proc. XXX Lyubishchev’s Readings “Modern Problems of Ecology and Evolution”), Ulyanovsk, 2017, part 2, pp. 66–73.

  119. Schlaepfer, M.A., Runge, M.C., and Sherman, P.W., Ecological and evolutionary traps, Trends Ecol. Evol., 2002, vol. 17, pp. 474–480.

    Article  Google Scholar 

  120. Schmalhausen, I.I., The stability of organic forms (ontogenesis) in their historical development, Zh. Obshch. Biol., 1945, vol. 6, no. 1, pp. 3–25.

    CAS  PubMed  Google Scholar 

  121. Schmalhausen, I.I., The study of evolutionary factors: the main forms of natural selection, in Yubileinyi sbornik, posvyashchennyi tridtsatiletiyu Velikoi Oktyabr’skoi sotsialisticheskoi revolyutsii (Jubilee Collection of Scientific Works Dedicated to the 30 Anniversary of the Great October Socialist Revolution), Moscow: Akad. Nauk SSSR, 1947, part 2, pp. 241–266.

  122. Schmalhausen, I.I., Stabilizing selection and evolution of individual development, in Izbrannye trudy. Organizm kak tseloe v individual’nom i istoricheskom razvitii (Selected Research Works. Organism as a whole in Individual and Historical Development), Moscow: Nauka, 1982, pp. 348–372.

  123. Schmalhausen, I.I., Voprosy darvinizma. Neopublikovannye raboty (Problems of Darwinism: Unpublished Research Works), Moscow: Nauka, 1990.

  124. Schopf, T.J.M., Rates of evolution and the notion of “living fossils,” Annu. Rev. Earth Planet. Sci., 1984, vol. 12, pp. 245–292.

    Article  Google Scholar 

  125. Severtsov, A.N., Morfologicheskie zakonomernosti evolyutsii (Morphological Pattern of Evolution), Moscow: Akad. Nauk SSSR, 1939.

  126. Severtsov, A.S., About the reasons of evolutionary stasis, Zool. Zh., 2004, vol. 83, no. 8, pp. 927–935.

    Google Scholar 

  127. Severtsov, A.S., Evolyutsionnyi stazis i mikroevolyutsiya (Evolutionary Stasis and Microevolution), Moscow: KMK, 2008.

  128. Shcherbakov, V.P., Evolution as the barrier for entropy. 1. Mechanisms of species homeostasis, Zh. Obshch. Biol., 2005, vol. 66, no. 3, pp. 195–211.

    CAS  PubMed  Google Scholar 

  129. Shcherbakov, V.P., Stasis is inevitable consequence of every successful evolution, Biosemiotics, 2012, vol. 5, pp. 227–245.

    Article  Google Scholar 

  130. Smith, D.G. and Hartel, K.E., Margaritiferidae (Mollusca: Unionoida): possible hosts for Rhodeus (Pisces: Cyprinidae), Pol. Arch. Hydrobiol., 1999, vol. 46, pp. 277–281.

    Google Scholar 

  131. Speech of M.V. Mina, in O polozhenii v biologicheskoi nauke. Stenograficheskii otchet sessii VASKhNIL, 31 iyulya–7 avgusta 1948 g. (On the State of Biological Science: Stenographic Report of Session of the All-Union Lenin Academy of Agricultural Sciences, July 31–August 7, 1948), Moscow: Sel’khozgiz, 1948, pp. 221–234.

  132. Stanley, S.M., Macroevolution: Patterns and Process, San Francisco: W.H. Freeman, 1979.

    Google Scholar 

  133. Stegnii, V.N., Arkhitektonika genoma, sistemnye mutatsii i evolyutsiya (Architectonics of Genome, Systemic Mutations, and Evolution), Novosibirsk: Novosib. Gos. Univ., 1993.

  134. Stepien, C.A., Morton, B., Dabrowska, K.A., Guarnera, R.A., Radja, T., and Radja, B., Genetic diversity and evolutionary relationships of the troglodytic ‘living fossil’ Congeria kusceri (Bivalvia: Dreissenidae), Mol. Ecol., 2001, vol. 10, pp. 1873–1879.

    Article  CAS  PubMed  Google Scholar 

  135. Subramanian, S., Hay, J.M., Mohandesan, E., Millar, C.D., and Lambert, D.M., Molecular and morphological evolution in tuatara are decoupled, Trends Genet., 2009, vol. 25, pp. 16–18.

    Article  CAS  Google Scholar 

  136. Suno-Uchi, N., Sasaki, F., Chiba, S., and Kawata, M., Morphological stasis and phylogenetic relationships in Tadpole shrimps, Triops (Crustacea: Notostraca), Biol. J. Linn. Soc., 1997, vol. 61, pp. 439–457.

    Google Scholar 

  137. Surov, A., Banaszek, A., Bogomolov, P., Feoktistova, N., and Monecke, S., Dramatic global decrease in the range and reproduction rate of the European hamster Cricetus cricetus, Endangered Species Res., 2016, vol. 31, pp. 119–145.

    Article  Google Scholar 

  138. Takezaki, N. and Nishihara, H., Resolving the phylogenetic position of coelacanth: the closest relative is not always the most appropriate outgroup, Genome Biol. Evol., 2016, vol. 8, pp. 1208–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Terent’eva, E.G., Creating a breed of the rainbow trout Rostal breed: methods and preliminary results, in Problemy tovarnogo vyrashchivaniya lososevykh ryb Rossii (Problems of Commercial Farming of Salmon Fishes in Russia), Murmansk: Polyar. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1995, pp. 36–42.

  140. Valentine, J.W., Climatic regulation of species diversification and extinction, Bull. Geol. Soc. Am., 1968, vol. 79, pp. 273–276.

    Article  Google Scholar 

  141. van Valen, L.M., A new evolutionary low, Evol. Theory, 1973, vol. 1, pp. 1–30.

    Google Scholar 

  142. Vasil’ev, V.P., Evolyutsionnaya kariologiya ryb (Evolutionary Karyology of Fishes), Moscow: Nauka, 1985.

  143. Venkatesh, B., et al., Elephant shark genome provides unique insights into gnathostome evolution, Nature, 2014, vol. 505, pp. 174–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Veselov, A.E. and Kalyuzhnyi, S.M., Ekologiya, povedenie i rasprostranenie molodi etlanticheskogo lososya (Ecology, Behavior, and Distribution of Atlantic Salmon Juveniles), Petrozavodsk: Kareliya, 2001.

  145. Vezhnovets, V.V., Zaidykov, I.Yu., Naumova, E.Yu., and Sysova, E.A., Biological peculiarities of two copepod species (Crustacea, Copepoda, Calanoida) as possible causes of changes in their geographical ranges, Russ. J. Biol. Invasions, 2012, vol. 3, no. 4, pp. 243–250.

    Article  Google Scholar 

  146. Vorob’eva, E.I. and Feoktistova, N.Yu., A consistent evolutionist: On the 125th anniversary of the birth of Academician I.I. Shmalhausen, Herald Russ. Acad. Sci., 2009, vol. 79, no. 3, pp. 291–300.

    Article  Google Scholar 

  147. Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Concepts in Biology), Moscow: Progress-Traditsiya, 1999.

  148. Voss, S.R. and Shaffer, H.B., Evolutionary genetics of metamorphic failure using wild caught vs. laboratory axolotls (Ambystoma mexicanum), Mol. Ecol., 2000, vol. 9, pp. 1401–1407.

    Article  CAS  PubMed  Google Scholar 

  149. Voss, S.R., Epperlein, H.H., and Tanaka, E.M., Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies, Cold Spring Harbor Protoc., 2009. https://doi.org/10.1101/pdb.emo128

  150. Wagner, A., The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems, Oxford: Oxford Univ. Press, 2011.

    Book  Google Scholar 

  151. Wagner, G.P. and Draghi, J., Evolution of evolvability, in Evolution, the Extended Synthesis, Pigliucci, M. and Müller, G.B., Eds., London: MIT Press, 2010, pp. 377–399.

    Google Scholar 

  152. Wilkens, H. and Strecker, U., Evolution in the Dark: Darwin’s Loss without Selection, Berlin: Springer-Verlag, 2017.

    Book  Google Scholar 

  153. Willis, J.C., The Course of Evolution by Differentiation Or Divergent Mutation Rather Than by Selection, Cambridge: Cambridge Univ. Press, 1940.

    Book  Google Scholar 

  154. Yamazaki, Y. and Goto, A., Molecular phylogeny and speciation of East Asian lampreys (genus Lethenteron) with reference to their life-history diversification, in Lampreys: Biology, Conservation and Control, Docker, M.F., Ed., Dordrecht: Springer-Verlag, 2015, vol. 1, pp. 20–62.

    Google Scholar 

  155. Yue, J.-X., Yu, J.-K., Putnam, N.H., and Holland, L.Z., The transcriptome of an Amphioxus, Asymmetron lucayanum, from the Bahamas: a window into chordate evolution, Genome Biol. Evol., 2014, vol. 6, pp. 2681–2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zagorodnyuk, I.V., A species in biology as continuous system, in Fenomen spivisnuvannya dvokh paradigm: kreatsionizmu ta evolyutsionnogo ucheniya (Phenomenon of Coexistence of Two Paradigms: Creationism and Evolutionary Theory), Kyiv: Virii, 2001, pp. 153–181.

  157. Zavadskii, K.M. and Kolchinskii, E.I., Evolyutsiya evolyutsii. Istoriko-kriticheskie ocherki problemy (Evolution of Evolution: Historical and Critical Essays of the Problems), Leningrad: Nauka, 1977.

  158. Zelinsky, Yu.P. and Makhrov, A.A., Homological series by chromosome number and the genome rearrangements in the phylogeny of Salmonoidei, Russ. J. Genet., 2002, vol. 38, no. 10, pp. 1115–1120.

    Article  CAS  Google Scholar 

  159. Zierold, T., Hanfling, B., and Gómez, A., Recent evolution of alternative reproductive modes in the ‘living fossil’ Triops cancriformis, BMC Evol. Biol., 2007, vol. 7, p. 161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Yu.P. Altukhov, V.S. Artamonova, I.N. Bolotov, V.E. Gokhman, Yu.Yu. Dgebuadze, Yu.P. Zelinsky, A.G. Kreslavsky, D.L. Lajus, A.B. Savinov, V.M. Spitsyn, V.V. Suslov, and V.S. Fridman for the discussion of topics addressed in this study.

Funding

This study was performed in the framework of the state assignment (Topic 6. Ecology and Biodiversity of Aquatic Communities, no. 0109-2018-0076 AAAA-A18-118042490059-5) and partially supported by Program no. 41 “Biodiversity of Natural Systems and Biological Resources of Russia” of the Presidium of the Russian Academy of Sciences and Basic Research Program “Promising Physical and Chemical Technologies of Special Purposes” of the Presidium of the Russian Academy of Sciences (project led by I.N. Bolotov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Makhrov.

Ethics declarations

Conflict of interests. The author declares that he has no conflict of interest.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhrov, A.A. Decreased Evolutionary Plasticity as a Result of Phylogenetic Immobilization and Its Ecological Significance. Contemp. Probl. Ecol. 12, 405–417 (2019). https://doi.org/10.1134/S199542551905007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199542551905007X

Keywords:

Navigation