Skip to main content
Log in

Cyclicity of Long-Term Population Dynamics in Dragonflies of the Genus Sympetrum (Odonata, Anisoptera) in the Basin of Lake Chany

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This work is directed at continuous studies of cyclicity of long-term (1980–2010) population dynamics of odonates in the basin of Lake Chany (in the south of Western Siberia). Four sympatric species of the genus Sympetrum have been investigated by spectral analysis method. The cycle spectra of population dynamics have been constructed for each species; the basic parameters of these cycles (period, phase, and power) have been calculated. Special number cycles have been found for each species. Interspecies differences increased in the direction from high to low frequencies of the spectrum. In the cases of similar cycles, interspecies differences have been shown in the ratio of cycle powers and/or phases: identical phases can indicate the ability of species to increase their number synchronously with any of close species; different phases can indicate the possibility of a small-numbered species to reach its maximum number against the minimum number of numerous species. A comparison of sympatric species spectra of the genera Coenagrion and Sympetrum has led to the conclusion that, the more similarity there is in environmental standards among species inside a genus (as for Sympetrum), the more specific the species frequency spectra are. All species of the genus Sympetrum can synchronize their number fluctuations with 2- to 3 and 4- to 5-year fluctuations of the local climate. Also specific synchronization with important nature-climatic rhythms was found for each species: for S. danae, with an 18-year rhythm of the level of Lake Chany and with a 16-year rhythm of June temperatures; for S. flaveolum, with a 24-year Brickner cycle, with an 8-year cycle of rainfall, and with a 28-year cycle of April and May temperatures; for S. vulgatum, with a 40- to 42-year cycle of the level of Lake Chany, with 12-year cycle of rainfall, and with a 7-year cycle of April and June temperatures; and for S. sanguineum, with a 7-year cycle of April and June temperatures. Perhaps the adaptation mechanism of species to each other and to environments is enclosed in the cyclicity of long-term fluctuations of species number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, R.A., Mill, P.J., and Zawal, A., Mites on Zygoptera, with particular reference to Arrenurus species, selection sites and host preferences, Odonatologica, 2007, vol. 36, no. 4, pp. 339–347.

    Google Scholar 

  • Baker, R.L., Elkin, C.M., and Brennan, H.A., Aggressive interactions and risk of fish predation for larval damselflies, J. Insect Behav., 1999, vol. 12, no. 2, pp. 213–223.

    Article  Google Scholar 

  • Begon, M., Harper, J.L., and Townsend, C.R., Ecology: Individuals, Populations and Communities, Oxford: Blackwell, 1986.

    Google Scholar 

  • Belyshev, B.F., Haritonov, A.Yu., Borisov, S.N., et al., Fauna i ekologiya strekoz (Fauna and Ecology of Dragonflies), Novosibirsk: Nauka, 1989.

    Google Scholar 

  • Benard, M.F. and McCauley, S.J., Integrating across lifehistory stages: consequences of natal habitat effects on dispersal, Am. Nat., 2008, vol. 171, pp. 553–567.

    Article  Google Scholar 

  • Bjørnstad, O.N., Stenseth, N.C., Saitoh, T., and Lingjserde, O.C., Mapping the regional transition to cyclicity in Clethrionomys rufocanus: spectral densities and functional data analysis, Res. Popul. Ecol., 1998, vol. 40, no. 1, pp. 77–84.

    Article  Google Scholar 

  • Chernyavskii, F.B. and Lazutkin, A.N., Tsikly lemmingov i polevok na Severe (Cycles of Lemmings and Voles in the North), Vladivostok: Inst. Biol. Probl. Sev., Dal’nevost. Otd., Ross. Akad. Nauk, 2004.

    Google Scholar 

  • Conrad, K.F., Willson, K.H., Whitfield, K., Harvey, I.F., Thomas, C.J., and Sherratt, T.N., Characteristics of dispersing Ischnura elegans and Coenagrion puella (Odonata): age, sex, size, morph, and ectoparasitism, Ecography, 2002, vol. 25, pp. 39–45.

    Article  Google Scholar 

  • Corbet, P.S., Dragonflies: Behavior and Ecology of Odonata, Colchester: Harley Books, 1999.

    Google Scholar 

  • Dingemanse, N.J. and Kalkman, V.J., Changing temperature regimes have advanced the phenology of Odonata in the Netherlands, Ecol. Entomol., 2008, vol. 33, pp. 1–9.

    Article  Google Scholar 

  • Doganovskii, A.M., Water level regime of lakes as an integral indicator of climatic and ecological changes, Terra Humana, 2007, no. 1, pp. 103–110.

    Google Scholar 

  • Dronzikova, M.V., Behavior of Libellula quadrimaculata (Linnaeus, 1758) larva (Odonata, Libellulidae) and its modification during ontogenesis, Evraziatskii Entomol. Zh., 2010, vol. 9, no. 2, pp. 255–262.

    Google Scholar 

  • Duvanova, I.A., Khitsova, L.N., Medosekin, Yu.V., and Drozdova, V.F., Population analysis of dynamics of the field mouse (Apodemus agrarius Pall., 1777) population in Lipetsk oblast, Povolzhskii Ekol. Zh., 2009, no. 1, pp. 26–34.

    Google Scholar 

  • Ekologiya ozera Chany (Ecology of the Chany Lake), Novosibirsk: Nauka, 1986.

  • Erdakov, L.N., Biologicheskie ritmy i printsypy sinkhronizatsii v ekologicheskikh sistemakh (khronoekologiya) (Biological Rhythms and Principles of Synchronization in Ecological Systems: Chronoecology), Tomsk: Tomsk. Gos. Univ., 1991.

    Google Scholar 

  • Erdakov, L.N., Biologicheskie ritmy: osob’, populyatsiya, soobshchestvo. Tsiklichnost’ v zhivykh sistemakh (Biological Rhythms: A Species, Population, and Community. Cyclicity in Living Systems), Saarbrucken: LAMBERT Academic, 2011.

    Google Scholar 

  • Fefelov, I.V., Dynamics of ornithological fauna in the Selenga River delta: ecology, problems, and prospects, Vestn. Buryat. Gos. Univ., Ser. 2: Biol., 1999, no. 2, pp. 40–51.

    Google Scholar 

  • GNU Octave. https://doi.org/www.gnu.org/software/octave/.

  • Harabiš, F. and Dolný, A., Ecological factors determining the density-distribution of Central European dragonflies (Odonata), Eur. J. Entomol., 2010, vol. 107, pp. 571–577.

    Article  Google Scholar 

  • Harcourt, D.G., Population dynamics of Leptinotarsa decemlineata (Say) in eastern Ontario, Can. Entomol., 1971, vol. 103, pp. 1049–1061.

    Article  Google Scholar 

  • Haritonov, A.Yu., Boreal Odonata fauna and ecological factors of geographical distribution of dragonflies, Doctoral (Biol.) Dissertation, Moscow, 1991.

    Google Scholar 

  • Haritonov, A.Yu., Intra- and interspecies interactions of dragonflies (Insecta, Odonata) as a factor of development of species ranges and stabilization of their borders, Sib. Ekol. Zh., 1994, no. 4, pp. 321–329.

    Google Scholar 

  • Haritonov, A. and Popova, O., Spatial displacements of Odonata in south-west Siberia, Int. J. Odonatol., 2011, vol. 14, no. 1, pp. 1–10.

    Article  Google Scholar 

  • Hassall, C. and Thompson, D.J., The effects of environmental warming on Odonata: a review, Int. J. Odonatol., 2008, vol. 11, no. 2, pp. 131–153.

    Article  Google Scholar 

  • Hickling, R., Roy, D.B., Hill, J.K., and Tomas, C.D., A northward shift of range margins in British Odonata, Global Change Biol., 2005, vol. 11, pp. 502–506.

    Article  Google Scholar 

  • Hottenbacher, N. and Koch, K., Influence of egg size on egg and larval development of Sympetrum striolatum at different prey availability (Odonata: Libellulidae), Int. J. Odonatol., 2006, vol. 9, no. 2, pp. 165–174.

    Article  Google Scholar 

  • Katayama, M., Differential survival rates of damselfly larvae in the presence of newt and dragonfly predators, Int. J. Odonatol., 2013, vol. 16, no. 2, pp. 177–182.

    Article  Google Scholar 

  • Kausrud, K.L., Mysterud, A., Steen, H., Vik, J.O., Østbye, E., Cazelles, B., Framstad, E., Eikeset, A.M., Mysterud, I., Solhøy, T., and Stenseth, N.C., Linking climate change to lemming cycles, Nature, 2008, vol. 456, pp. 93–97.

    Article  CAS  PubMed  Google Scholar 

  • Kiselev, S.V. and Yamborko, A.V., Population dynamics of Laxmann’s (Sorex caecutiens) and taiga (Sorex isodon) shrews in the Upper Kolyma River basin, Zool. Zh., 2014, vol. 93, no. 9, pp. 1106–1116.

    Google Scholar 

  • Korpela, K., Delgado, M., Henttonen, H., Korpimaki, E., Koskela, E., Ovaskainen, O., Pietiainen, H., Sundell, J., Gyoccoz, N., and Huitu, O., Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles., Global Change Biol., 2013, vol. 19, pp. 697–710.

    Article  Google Scholar 

  • Marple, S.L., Jr., Digital Spectral Analysis with Applications, Englewood Cliffs, NJ: Prentice-Hall, 1987.

    Google Scholar 

  • Martynyuk, V.S., Vladimirskii, B.M., and Temur’yants, N.A., Biological rhythms and electromagnetic fields of habitat, Byull. Vost.-Sib. Nauch. Tsentr, Sib. Otd., Ross. Akad. Med. Nauk, 2007, no. 2 (54), pp. 143–146.

    Google Scholar 

  • McCoy, M.W., Barfield, M., and Holt, R.D., Predator shadows: complex life histories as generators of spatially patterned indirect interactions across ecosystems, Oikos, 2009, vol. 118, pp. 87–100.

    Article  Google Scholar 

  • McPeek, M.A., Ecological factors limiting the distribution and abundances of Odonata, in Dragonflies and Damselflies, Córdoba-Aguilar, A., Ed., Oxford: Oxford Univ. Press, 2008, pp. 51–62.

    Chapter  Google Scholar 

  • McPeek, M.A. and Peckarsky, B.L., Life histories and the strengths of species interactions: combining mortality, growth, and fecundity effects, Ecology, 1998, vol. 79, pp. 867–879.

    Article  Google Scholar 

  • Monitoring climatic change with dragonflies, BioRisk, 2010, vol. 5.

  • Nikol’skii, G.V., Modern problems in analysis of population dynamics of the animals, Zool. Zh., 1965, vol. 45, no. 8, pp. 971–983.

    Google Scholar 

  • Pianka, E.R., Evolutionary Ecology, New York: Harper and Row, 1974.

    Google Scholar 

  • Pierce, C.L. and Crowley, P.H., Behavior and ecological interactions of larval Odonata, Ecology, 1985, vol. 66, no. 5, pp. 1504–1512.

    Article  Google Scholar 

  • Poole, R.W., An Introduction to Quantitative Ecology, Series in Population Biology, New York: McGraw-Hill, 1974.

    Google Scholar 

  • Popova, O.N., Dragonflies of the genus Sympetrum, Cand. Sci. (Biol.) Dissertation, Novosibirsk, 1999.

    Google Scholar 

  • Popova, O.N., The influence of climate on the resettlement and periods of flying of dragonflies of the genus Sympetrum, Vestn. Chelyab. Gos. Pedagog. Univ., Ser. 10: Ekol. Valeol. Pedagog. Psikhol., 2001a, no. 2, pp. 24–33.

    Google Scholar 

  • Popova, O.N., Dependence of distribution of dragonflies of genus Sympetrum on properties of larval habitats, Belyshevia, 2001b, vol. 1, no. 1, pp. 14–17.

    Google Scholar 

  • Popova, O.N., The role of interspecific interactions in the distribution of dragonflies of the genus Sympetrum (Odonata: Libellulidae), Materialy Vserossiiskoi konferentsii “Biologicheskaya Nauka i obrazovanie v pedagogicheskikh vuzakh,” 11–12 maya 2001 g. (Proc. All- Russ. Conf. “Biological Science and Education in Pedagogical Higher Education Institutions,” May 11–12, 2001), Novosibirsk, 2001c, pp. 15–22.

    Google Scholar 

  • Popova, O.N., The dragonfly larva population (Odonata) in a temporal water pond, Evraziatskii Entomol. Zh., 2010, vol. 9, no. 2, pp. 239–248.

    Google Scholar 

  • Popova, O.N. and Haritonov, A.Yu., Population dynamics and migration in the dragonfly Libellula quadrimaculata L., 1758 (Odonata, Libellulidae), Evraziatskii Entomol. Zh., 2010, vol. 9, no. 2, pp. 231–238.

    Google Scholar 

  • Popova, O.N. and Haritonov, A.Yu., Disclosure of biotopical groups in the population of the dragonfly Coenagrion armatum (Charpentier, 1840), Contemp. Probl. Ecol., 2014a, vol. 7, no. 2, pp. 175–181.

    Article  Google Scholar 

  • Popova, O.N. and Haritonov, A.Yu., Mass reproductive wanderings of dragonflies of the genus Sympetrum (Odonata, Libellulidae), Entomol. Rev., 2014b, vol. 94, no. 1, pp. 21–28.

    Article  Google Scholar 

  • Popova, O.N. and Smirnova, Yu.A., Community of aquatic insects in forest-steppe lakes of Baraba (south of West Siberia), Contemp. Probl. Ecol., 2010, vol. 3, no. 1, pp. 50–54.

    Article  Google Scholar 

  • Popova, O.N., Haritonov, A.Yu., and Erdakov, L.N., Cyclicity of long-term population dynamics in damselflies of the genus Coenagrion (Odonata, Zygoptera) in the Lake Chany basin, Russ. J. Ecol., 2016a, vol. 47, no. 1, pp. 74–81.

    Article  Google Scholar 

  • Popova, O.N., Haritonov, A.Yu., Anishchenko, O.V., and Gladyshev, M.I., Export of biomass and metals from aquatic to terrestrial ecosystems via the emergence of dragonflies (Insecta: Odonata), Contemp. Probl. Ecol., 2016b, vol. 9, no. 4, pp. 458–473.

    Article  Google Scholar 

  • Reimers, N.F., Ekologiya. Teoriya, zakony, pravila, printsipy i gipotizy (Ecology: Theories, Laws, Rules, Principles, and Hypothesis), Moscow: Rossiya Molodaya, 1994.

    Google Scholar 

  • Remsburg, A., Relative influence of prior life stages and habitat variables on dragonfly (Odonata: Gomphidae) densities among lake sites, Diversity, 2011, vol. 3, pp. 200–216.

    Article  Google Scholar 

  • Remsburg, A.J. and Turner, M.G., Aquatic and terrestrial drivers of dragonfy (Odonata) assemblages within and among north-temperate lakes, J. North Am. Benthol. Soc., 2009, vol. 28, no. 1, pp. 44–56.

    Article  Google Scholar 

  • Root, R.B., The niche exploitation pattern of the blue-gray gnatcatcher, Ecol. Monogr., 1967, vol. 37, pp. 317–350.

    Article  Google Scholar 

  • Ryazanova, G.I., Intraspecific territorial competitiveness of dragonfly larvae, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 1998.

    Google Scholar 

  • Sahlén, G., Haase, S., and Suhling, F., Morphology of dragonfly larvae along a habitat gradient: interactions with feeding behavior and growth (Odonata: Libellulidae), Int. J. Odonatol., 2008, vol. 11, no. 2, pp. 225–240.

    Article  Google Scholar 

  • Savkin, V.M., Dvurechenskaya, S.Ya., Saprykina, Ya.V., and Marusin, K.V., General hydrological-morphometric and hydrochemical characteristics of the Chany Lake, Sib. Ekol. Zh., 2005, no. 2, pp. 183–192.

    Google Scholar 

  • Savkin, V.M., Orlova, G.A., and Kondakova, O.V., Modern water balance of closed Chany Lake, Geogr. Prirod. Resur., 2006, no. 1, pp. 123–131.

    Google Scholar 

  • Serbina, E.A. and Haritonov, A.Yu., Role of dragonflies in life cycle of trematodes of family Prosthogonimidae in forest-steppe reservoirs of the south of Western Siberia, Belyshevia, 2001, vol. 1, no. 1, pp. 18–20.

    Google Scholar 

  • Sinclair, A.R.E., Regulation and population models for a tropical ruminant, East Afr. Wildl. J., 1973, vol. 11, pp. 307–316.

    Article  Google Scholar 

  • Stoks, R. and Córdoba-Aguilar, A., Evolutionary ecology of Odonata: a complex life cycle perspective, Annu. Rev. Entomol., 2012, vol. 57, pp. 249–265.

    Article  CAS  PubMed  Google Scholar 

  • Stoks, R., De Block, M., and McPeek, M.A., Alternative growth and energy storage responses to mortality threats in damselflies, Ecol. Lett., 2005, vol. 8, pp. 1307–1316.

    Article  Google Scholar 

  • Suhling, F., Suhling, I., and Richter, O., Temperature response of growth of larval dragonflies—an overview, Int. J. Odonatol., 2015, vol. 18, no. 1, pp. 15–30.

    Article  Google Scholar 

  • Sukhacheva (Smirnova), G.A., Dragonflies and their trophic chains in forest-steppe of Western Siberia, Cand. Sci. (Biol.) Dissertation, Novosibirsk, 1989.

    Google Scholar 

  • Sukhacheva, G.A., Haritonov, A.Yu., and Perevozchikova, T.Yu., Quantitative evaluation of feeding of dragonflies, Izv. Sib. Otd., Akad. Nauk SSSR, Ser. Biol. Nauki, 1988, no. 3, no. 20, pp. 3–7.

    Google Scholar 

  • Symonides, E., The structure and population dynamics of psammophytes on inland dunes, Ekol. Pol., 1979, vol. 27, pp. 191–234.

    Google Scholar 

  • Telepnev, V.G. and Erdakov, L.N. Description of population cycles of wood grouse (Tetrao urogallus L., 1758) through long-term monitoring, Contemp. Probl. Ecol., 2014, vol. 7, no. 5, pp. 530–536.

    Article  Google Scholar 

  • Varley, G.C. and Gradwell, G.R., Population models for the winter moth, Symp. R. Entomol. Soc. London, 1968, vol. 9, pp. 132–142.

    Google Scholar 

  • Wildermuth, H. and Martens, A., The feeding action of Forcipomyia paludis (Diptera: Ceratopogonidae), a parasite of Odonata imagines, Int. J. Odonatol., 2007, vol. 10, no. 2, pp. 249–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Popova.

Additional information

Original Russian Text © O.N. Popova, A.Yu. Haritonov, L.N. Erdakov, 2018, published in Sibirskii Ekologicheskii Zhurnal, 2018, No. 6, pp. 647–660.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, O.N., Haritonov, A.Y. & Erdakov, L.N. Cyclicity of Long-Term Population Dynamics in Dragonflies of the Genus Sympetrum (Odonata, Anisoptera) in the Basin of Lake Chany. Contemp. Probl. Ecol. 11, 551–562 (2018). https://doi.org/10.1134/S1995425518060082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425518060082

Keywords

Navigation